Skip to main content
Log in

An intronless sucrose:fructan-6-fructosyltransferase (6-SFT) gene from Dasypyrum villosum enhances abiotic tolerance in tobacco

  • Original Paper
  • Published:
Biologia Plantarum

Abstract

Fructans play vital roles in enhancing plant abiotic stress tolerance by reducing oxidative damage, stabilizing cell membranes, improving the osmotic adjustment capacity, and lowering the freezing point. In this study, a sucrose: fructan-6-fructosyltransferase (6-SFT) gene involved in the synthesis of fructans was isolated from Dasypyrum villosum, Dv-6-SFT, using genomic walking and reverse transcription (RT)-PCR. Alignment of the cDNA sequence with its genomic counterpart showed that no introns were present in the Dv-6-SFT gene, and thus it differs from all other plant 6-SFTs that have been cloned previously. Sequence analysis showed that the cDNA of the Dv-6-SFT sequence comprised 2 175 bp with a 1 863 bp open reading frame, and its deduced protein comprised 620 amino acids with a predicted molecular mass of 68.47 kDa. The Dv-6-SFT gene was transferred into tobacco (Nicotiana tabacum L.) cv. W38 via Agrobacterium-mediated transformation. The screened plants were tested by PCR and semi-quantitative RT-PCR, and the transgenic plants were evaluated under drought, cold, and salt stresses. The Dv-6-SFT transgenic tobacco plants had higher resistance to drought, cold, and salt stress than the non-transgenic plants. Further analysis showed that the transgenic plant expressing Dv-6-SFT had increased content of saccharides and proline, but reduced content of malondialdehyde in leaves. The results of this study demonstrate that the Dv-6-SFT gene is a potential candidate for conferring abiotic stress tolerance in plants and it could be used in crop improvement breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

1-FFT:

fructan:fructan 1-fructosyl transferase

cDNA:

complementary DNA

6G-FFT:

fructan:fructan 6G-fructosyltransferase

FT:

fructosyltransferase

GH32:

glycoside hydrolase family 32

gDNA:

genomic DNA

MDA:

malondialdehyde

MS:

Murashige and Skoog

NT:

non-transgenic

ORF:

open reading frame

pI:

isoelectric point

ROS:

reactive oxygen species

RT-PCR:

reverse transcription PCR

6-SFT:

sucrose:fructan-6-fructosyltransferase

1-SST:

sucrose:sucrose 1-fructosyltransferase

References

  • Abdelgawad, H., Peshev, D., Zinta, G., Van den Ende, W., Janssens, I.A., Asard, H.: Climate extreme effects on the chemical composition of temperate grassland species under ambient and elevated CO2: a comparison of fructan and non-fructan accumulators. — PLoS ONE 9: e92044, 2014.

    Article  Google Scholar 

  • Altenbach, D., Nüesch, E., Ritsema, T., Boller, T., Wiemken, A.: Mutational analysis of the active center of plant fructosyltransferases: Festuca 1-SST and barley 6-SFT. — FEBS Lett. 579: 4647–4653, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Ashraf, M., Foolad, M.R.: Roles of glycine betaine and proline in improving plant abiotic stress resistance. — Environ. exp. Bot. 59: 206–216, 2007.

    Article  CAS  Google Scholar 

  • Bates, L.S., Waldren, R.P., Teare, I.D.: Rapid determination of free proline for water-stress studies. — Plant Soil 39: 205–207, 1973.

    Article  CAS  Google Scholar 

  • Bie, X.M., Wang, K., She, M.Y., Du, L., Zhang, S.X., Li, J.R., Gao, X., Lin, Z.S., Ye, X.G.: Combinational transformation of three wheat genes encoding fructan biosynthesis enzymes confers increased fructan content and tolerance to abiotic stresses in tobacco. — Plant Cell Rep. 31: 2229–2238, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Bournay, A.S., Hedley, P.E., Maddison, A., Waugh, R., Machray, G.C.: Exon skipping induced by cold stress in a potato invertase gene transcript. — Nucl. Acids Res. 24: 2347–2351, 1996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao, Y., Bie, T., Wang, X., Chen, P.: Induction and transmission of wheat-Haynaldia villosa chromosomal translocations. — J. Genet. Genomics 36: 313–320, 2009.

    Article  PubMed  Google Scholar 

  • Chalmers, J., Johnson, X., Lidgett, A., Spangenberg, G.: Isolation and characterisation of a sucrose: sucrose 1-fructosyltransferase gene from perennial ryegrass (Lolium perenne). — J. Plant Physiol. 160: 1385–1391, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Chatterton, N.J., Harrison, P.A., Bennett, J.H., Asay, K.H.: Carbohydrate partitioning in 185 accessions of Gramineae grown under warm and cool temperatures. — J. Plant Physiol. 134: 169–179, 1989.

    Article  CAS  Google Scholar 

  • Chatterton, N.J., Harrison, P.A., Thornley, W.R., Bennett, J.H.: Structure of fructan oligomers in cheatgrass (Bromus tectorum L.). — New Phytol. 124: 389–396, 1993.

    Article  CAS  Google Scholar 

  • Chen, H., Nelson, R.S., Sherwood, J.L.: Enhanced recovery of transformants of Agrobacterium tumefaciens after freeze-thaw transformation and drug selection. — Biotechniques 16: 664–668, 670, 1994.

    CAS  PubMed  Google Scholar 

  • Couee, I., Sulmon, C., Gouesbet, G., El Amrani, A.: Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. — J. exp. Bot. 57: 449–459, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Coulombe-Huntington, J., Majewski, J.: Intron loss and gain in Drosophila. — Mol. Biol. Evol. 24: 2842–2850, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Crafts Brandner, S.J.: Fructans and freezing tolerance. — New Phytol. 166: 708–709, 2005.

    Article  PubMed  Google Scholar 

  • Darbyshire, B., Henry, R.J.: The distribution of fructans in onions. — New Phytol. 81: 29–34, 1978.

    Article  CAS  Google Scholar 

  • De Roover, J., Van den Branden, K., Van Laere, A., Van den Ende, W.: Drought induces fructan synthesis and 1-SST (sucrose: sucrose fructosyltransferase) in roots and leaves of chicory seedlings (Cichorium intybus L.). — Planta 210: 808–814, 2000.

    Article  PubMed  Google Scholar 

  • Del Viso, F., Puebla, A.F., Fusari, C.M., Casabuono, A.C., Couto, A.S., Pontis, H.G., Hopp, H.E., Heinz, R.A.: Molecular characterization of a putative sucrose:fructan 6-fructosyltransferase (6-SFT) of the cold-resistant Patagonian grass Bromus pictus associated with fructan accumulation under low temperatures. — Plant Cell Physiol. 50: 489–503, 2009.

    Article  PubMed  Google Scholar 

  • Diedhiou, C., Gaudet, D., Liang, Y., Sun, J., Lu, Z.X., Eudes, F., Laroche, A.: Carbohydrate profiling in seeds and seedlings of transgenic triticale modified in the expression of sucrose:sucrose-1-fructosyltransferase (1-SST) and sucrose:fructan-6-fructosyltransferase (6-SFT). — J. Biosci. Bioeng. 114: 371–378, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Fales, F.W.: The assimilation and degradation of carbohydrates by yeast cells. — J. biol. Chem. 193: 113–124, 1951.

    CAS  PubMed  Google Scholar 

  • Gao, X., She, M.Y., Yin, G.X., Yu, Y., Qiao, W.H., Du, L.P., Ye, X.G.: Cloning and characterization of genes coding for fructan biosynthesis enzymes (FBEs) in Triticeae plants. — Agr. Sci. China 9: 313–324, 2010.

    Article  CAS  Google Scholar 

  • Hartung, F., Blattner, F.R., Puchta, H.: Intron gain and loss in the evolution of the conserved eukaryotic recombination machinery. — Nucl. Acids Res. 30: 5175–5181, 2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He, X.L., Chen, Z.Z., Wang, J.W., Li, W.X., Zhao, J.X., Wu, J., Wang, Z.H., Chen, X.H.: A sucrose: fructan-6-fructosyltransferase (6-SFT) gene from Psathyrostachys huashanica confers abiotic stress tolerance in tobacco. — Gene 570: 239–247, 2015.

    Article  CAS  PubMed  Google Scholar 

  • Heath, R.L., Packer, L.: Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. — Arch. Biochem. Biophys. 125: 189–198, 1968.

    Article  CAS  PubMed  Google Scholar 

  • Hendry, G.A.: Evolutionary origins and natural functions of fructans - a climatological, biogeographic and mechanistic appraisal. — New Phytol. 123: 3–14, 1993.

    Article  CAS  Google Scholar 

  • Heyer, A.G., Wendenburg, R.: Gene cloning and functional characterization by heterologous expression of the fructosyltransferase of Aspergillus sydowi IAM 2544. — Appl. environ. Microbiol. 67: 363–370, 2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hincha, D.K., Livingston, D.R., Premakumar, R., Zuther, E., Obel, N., Cacela, C., Heyer, A.G.: Fructans from oat and rye: composition and effects on membrane stability during drying. — Biochim. biophys. Acta - Biomembranes 1768: 1611–1619, 2007.

    Article  CAS  Google Scholar 

  • Hisano, H., Kanazawa, A., Kawakami, A., Yoshida, M., Shimamoto, Y., Yamada, T.: Transgenic perennial ryegrass plants expressing wheat fructosyltransferase genes accumulate increased amounts of fructan and acquire increased tolerance on a cellular level to freezing. — Plant Sci. 167: 861–868, 2004.

    Article  CAS  Google Scholar 

  • Hisano, H., Kanazawa, A., Yoshida, M., Humphreys, M.O., Iizuka, M., Kitamura, K., Yamada, T.: Coordinated expression of functionally diverse fructosyltransferase genes is associated with fructan accumulation in response to low temperature in perennial ryegrass. — New Phytol. 178: 766–780, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Huynh, B., Mather, D.E., Schreiber, A.W., Toubia, J., Baumann, U., Shoaei, Z., Stein, N., Ariyadasa, R., Stangoulis, J.C., Edwards, J., Shirley, N., Langridge, P., Fleury, D.: Clusters of genes encoding fructan biosynthesizing enzymes in wheat and barley. — Plant mol. Biol. 80: 299–314, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Irshad Ahmed, M., Krishnamurthy, L., Purushothaman, R., Vadez, V., Zaman-Allah, M.: Plant biomass productivity under abiotic stresses in SAT agriculture. - In: Matovic, D. (ed.): Biomass Detection, Production and Usage. Pp 247–264. InTech, Rijeka 2011.

    Google Scholar 

  • Jeffares, D.C., Penkett, C.J., Bähler, J.: Rapidly regulated genes are intron poor. — Trends Genet. 24: 375–378, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Ji, X., Van den Ende, W., Schroeven, L., Clerens, S., Geuten, K., Cheng, S., Bennett, J.: The rice genome encodes two vacuolar invertases with fructan exohydrolase activity but lacks the related fructan biosynthesis genes of the Pooideae. — New Phytol. 173: 50–62, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Kawaguchi, M., Hiroi, J., Miya, M., Nishida, M., Iuchi, I., Yasumasu, S.: Intron-loss evolution of hatching enzyme genes in Teleostei. — BMC Evol. Biol. 10: 260, 2010.

    PubMed  PubMed Central  Google Scholar 

  • Kawakami, A., Sato, Y., Yoshida, M.: Genetic engineering of rice capable of synthesizing fructans and enhancing chilling tolerance. — J. exp. Bot. 59: 793–802, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Kawakami, A., Yoshida, M.: Molecular characterization of sucrose:sucrose 1-fructosyltransferase and sucrose:fructan 6-fructosyltransferase associated with fructan accumulation in winter wheat during cold hardening. — Biosci. Biotech. Biochem. 66: 2297–2305, 2002.

    Article  CAS  Google Scholar 

  • Kerepesi, I., Galiba, G.: Osmotic and salt stress-induced alteration in soluble carbohydrate content in wheat seedlings. — Crop Sci. 40: 482–487, 2000.

    Article  CAS  Google Scholar 

  • Knipp, G., Honermeier, B.: Effect of water stress on proline accumulation of genetically modified potatoes (Solanum tuberosum L.) generating fructans. — J. Plant Physiol. 163: 392–397, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Lammens, W., Le Roy, K., Yuan, S.G., Vergauwen, R., Rabijns, A., Van Laere, A., Strelkov, S.V., Van den Ende, W.: Crystal structure of 6-SST/6-SFT from Pachysandra terminalis, a plant fructan biosynthesizing enzyme in complex with its acceptor substrate 6-kestose. — Plant J. 70: 205–219, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Lasseur, B., Schroeven, L., Lammens, W., Le Roy, K., Spangenberg, G., Manduzio, H., Vergauwen, R., Lothier, J., Prud'Homme, M.P., Van den Ende, W.: Transforming a fructan:fructan 6G-fructosyltransferase from perennial ryegrass into a sucrose:sucrose 1-fructosyltransferase. — Plant Physiol. 149: 327–339, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Roy, K., Lammens, W., Verhaest, M., De Coninck, B., Rabijns, A., Van Laere, A., Van den Ende, W.: Unraveling the difference between invertases and fructan exohydrolases: a single amino acid (Asp-239) substitution transforms Arabidopsis cell wall invertase1 into a fructan 1-exohydrolase. — Plant Physiol. 145: 616–625, 2007.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, H.J., Yang, A.F., Zhang, X.C., Gao, F., Zhang, J.R.: Improving freezing tolerance of transgenic tobacco expressing sucrose: sucrose 1-fructosyltransferase gene from Lactuca sativa. — Plant Cell Tissue Organ Cult. 89: 37–48, 2007.

    Article  CAS  Google Scholar 

  • Livingston III, D.P., Hincha, D.K., Heyer, A.G.: Fructan and its relationship to abiotic stress tolerance in plants. — Cell. mol. Life Sci. 66: 2007–2023, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livingston, D., Premakumar, R., Tallury, S.P.: Carbohydrate concentrations in crown fractions from winter oat during hardening at sub-zero temperatures. — Ann. Bot. 96: 331–335, 2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maleux, K., Van den Ende, W.: Levans in excised leaves of Dactylis glomerata: effects of light, sugars, temperature and senescence. — J. Plant Biol. 50: 671–680, 2007.

    Article  CAS  Google Scholar 

  • Peshev, D., Vergauwen, R., Moglia, A., Hideg, E.V., Van den Ende, W.: Towards understanding vacuolar antioxidant mechanisms: a role for fructans? — J. exp. Bot. 64: 1025–1038, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pilon-Smits, E., Ebskamp, M., Paul, M.J., Jeuken, M., Weisbeek, P.J., Smeekens, S.: Improved performance of transgenic fructan-accumulating tobacco under drought stress. — Plant Physiol. 107: 125–130, 1995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pilon-Smits, E.A., Terry, N., Sears, T., Van Dun, K.: Enhanced drought resistance in fructan-producing sugar beet. — Plant Physiol. Biochem. 37: 313–317, 1999.

    Article  CAS  Google Scholar 

  • Pollock, C.J.: Physiology and metabolism of sucrosyl-fructans. — Seminar Series Soc. exp. Biol. 19: 97–113, 1984.

    Google Scholar 

  • Pontis, H.G.: Fructans and cold stress. — J. Plant Physiol. 134: 148–150, 1989.

    Article  CAS  Google Scholar 

  • Ren, X., Chen, Z., Liu, Y., Zhang, H., Zhang, M., Liu, Q., Hong, X., Zhu, J., Gong, Z.: ABO3, a WRKY transcription factor, mediates plant responses to abscisic acid and drought tolerance in Arabidopsis. — Plant J. 63: 417–429, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ritsema, T., Joling, J., Smeekens, S.: Patterns of fructan synthesized by onion fructan: fructan 6G-fructosyltransferase expressed in tobacco BY2 cells-is fructan: fructan 1-fructosyltransferase needed in onion? — New Phytol. 160: 61–67, 2003.

    Article  CAS  Google Scholar 

  • Ruelland, E., Vaultier, M., Zachowski, A., Hurry, V.: Cold signalling and cold acclimation in plants. — Adv. Bot. Res. 49: 35–150, 2009.

    Article  CAS  Google Scholar 

  • Sambrook, J., Fritsch, E.F., Maniatis, T. (ed): Molecular Cloning., 3rd Ed. - Cold Spring Harbor Laboratory Press, Cold Spring Harbor - New York 1989.

    Google Scholar 

  • Schroeven, L., Lammens, W., Kawakami, A., Yoshida, M., Van Laere, A., Van den Ende, W.: Creating S-type characteristics in the F-type enzyme fructan:fructan 1-fructosyltransferase of Triticum aestivum L. — J. exp. Bot. 60: 3687–3696, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Schuler, M.A., Zielinski, R.E.: Transformation of leaf discs with Agrobacterium. - In: Schuler, M.A., Zielinski, R.E. (ed.): Methods in Plant Molecular Biology. Pp 145–156. Academic Press, San Diego 1989.

    Chapter  Google Scholar 

  • Shahbaz, M., Ashraf, M.: Improving salinity tolerance in cereals. — Crit. Rev. Plant Sci. 32: 237–249, 2013.

    Article  Google Scholar 

  • Shen, B.O., Jensen, R.G., Bohnert, H.J.: Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts. — Plant Physiol. 113: 1177–1183, 1997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simpson, C.G., Hedley, P.E., Watters, J.A., Clark, G.P., Mcquade, C., Machray, G.C., Brown, J.W.S.: Requirements for mini-exon inclusion in potato invertase mRNAs provides evidence for exon-scanning interactions in plants. — RNA 6: 422–433, 2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smirnoff, N.R.M.: The origin of the proline accumulated in primary roots of maize seedlings at low water potential. — J. exp. Bot. 45: 273–278, 1994.

    Google Scholar 

  • Spollen, W.G., Nelson, C.J.: Response of fructan to water deficit in growing leaves of tall fescue. — Plant Physiol. 106: 329–336, 1994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sprenger, N., Bortlik, K., Brandt, A., Boller, T., Wiemken, A.: Purification, cloning, and functional expression of sucrose: fructan 6-fructosyltransferase, a key enzyme of fructan synthesis in barley. — Proc. nat. Acad. Sci. USA 92: 11652–11656, 1995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szabados, L., Savouré, A.: Proline: a multifunctional amino acid. — Trends Plant Sci. 15: 89–97, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Tamura, K., Sanada, Y., Tase, K., Kawakami, A., Yoshida, M., Yamada, T.: Comparative study of transgenic Brachypodium distachyon expressing sucrose:fructan 6-fructosyltransferases from wheat and timothy grass with different enzymatic properties. — Planta 239: 783–792, 2014a.

    Article  CAS  PubMed  Google Scholar 

  • Tamura, K., Sanada, Y., Tase, K., Yoshida, M.: Fructan metabolism and expression of genes coding fructan metabolic enzymes during cold acclimation and overwintering in timothy (Phleum pratense). — J. Plant Physiol. 171: 951–958, 2014b.

    Article  CAS  PubMed  Google Scholar 

  • Tamura, K.I., Kawakami, A., Sanada, Y., Tase, K., Komatsu, T., Yoshida, M.: Cloning and functional analysis of a fructosyltransferase cDNA for synthesis of highly polymerized levans in timothy (Phleum pratense L.). — J. exp. Bot. 60: 893–905, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarkowski, Ł.P., Van den Ende, W.: Cold tolerance triggered by soluble sugars: a multifaceted countermeasure. — Front. Plant Sci. 6: 203–210, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  • Voetberg, G.S., Sharp, R.E.: Growth of the maize primary root at low water potentials III. Role of increased proline deposition in osmotic adjustment. — Plant Physiol. 96: 1125–1130, 1991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei, J.Z., Chatterton, N.J.: Fructan biosynthesis and fructosyltransferase evolution: expression of the 6-SFT (sucrose: fructan 6-fructosyltransferase) gene in crested wheatgrass (Agropyron cristatum). — J. Plant Physiol. 158: 1203–1213, 2001.

    Article  CAS  Google Scholar 

  • Wei, J.Z., Chatterton, N.J., Harrison, P.A., Wang, R., Larson, S.R.: Characterization of fructan biosynthesis in big bluegrass (Poa secunda). — J. Plant Physiol. 159: 705–715, 2002.

    Article  CAS  Google Scholar 

  • Wei, J.Z., Chatterton, J.N., Larson, S.R.: Expression of sucrose: fructan 6-fructosyltransferase (6-SFT) and myo - inositol 1-phosphate synthase (MIPS) genes in barley (Hordeum vulgare) leaves. — J. Plant Physiol. 158: 635–643, 2001.

    Article  CAS  Google Scholar 

  • Yoshida, M., Lin, D., Kawakami, A.: A mini exon in the sucrose: sucrose 1-fructosyltransferase gene of wheat. — J. Plant Physiol. 161: 1277–1279, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, B., Peng, R., Xiong, A., Xu, J., Fu, X., Zhao, W., Jin, X., Meng, X., Gao, J., Cai, R.: Transformation with a gene for myo-inositol O-methyltransferase enhances the cold tolerance of Arabidopsis thaliana. — Biol. Plant. 56: 135–139, 2012.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. H. Chen.

Additional information

Acknowledgments: The authors thank Dr. D.E. Jackson for useful advice and editing the English language content of the manuscript. Much appreciated financial support was provided by the National Natural Science Foundation of China (31571650) and the Tang Zhong-Ying Breeding Funding Project of the Northwest A & F University.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X.L., Wang, J.W., Li, W.X. et al. An intronless sucrose:fructan-6-fructosyltransferase (6-SFT) gene from Dasypyrum villosum enhances abiotic tolerance in tobacco. Biol Plant 61, 235–245 (2017). https://doi.org/10.1007/s10535-016-0696-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-016-0696-1

Additional key words

Navigation