Skip to main content
Log in

Finding genomic regions and candidate genes governing water use efficiency in rice

  • Original Paper
  • Published:
Biologia Plantarum

Abstract

Water use efficiency (WUE) is an worth attempting trait to discover the genomic regions governing it, especially in view of the diminishing water resources for the crop plants in general and rice in particular. In order to address this, the present investigation was aimed at identification of genomic regions governing WUE employing a recombinant inbred line population derived from a cross between INRC10192, a high WUE landrace, and IR64, a high yielding cultivar. A total of 36 quantitative trait loci (QTLs) were detected under control as well as drought conditions on chromosomes 1, 2, 4, 8, 9, 10, and 11. Among all, the QTLs with the marker intervals RM486-RM6703, RM6703-RM11484, RM404-RM447, RM24879-RM171, and RM229-RM332 on chromosomes 1, 8, 10, and 11 were found to govern the water use efficiency related traits such as carbon isotope discrimination, specific leaf area, leaf width, and relative water content. Nine major QTL intervals were targeted for candidate gene identification using gene ontology (GO) and transcriptome-based analyses. Overrepresented GO terms in the targeted QTLs were found to be associated with the genes/pathways controlling stomatal regulatory mechanism, stress responsive genes or transcription factors, and saccharide biosynthesis pathways under stress situation. Hence, these genes or genomic regions are potential candidates for development of high WUE rice cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C:

control

CID:

carbon isotope discrimination

FPKM:

fragments per kilobase of exon per million fragments

GO:

gene ontology

LA:

leaf area

LLN:

leaf length

LOD:

maximum likelihood ratio of odds

LWD:

leaf width

NFG:

number of filled grains

nsSNPs:

non synonymous single nucleotide polymorphic regions

PNO:

total number of panicles

QTL:

quantitative trait locus

RIL:

recombinant inbred line

RTLN:

root length

RWC:

relative water content

SHLN:

shoot length

SLA:

specific leaf area

SPF:

spikelet fertility

T:

treatment

TYLD:

total yield per plant

WUE:

water use efficiency

References

  • Berger, D., Altmann, T.: A subtilisin-like serine protease involved in the regulation of stomatal density and distribution in Arabidopsis thaliana. — Genes Dev. 14: 1119–1131, 2000.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cho, Y.C., Suh, J.P., Choi, I.S., Hong, H.C., Beak, M.K., Kang, K.H., Kim, Y.G., Ahn, S.N., Choi, H.C., Hwang, H.G., Moon, H.P.: QTLs analysis of yield and its related traits in wild rice relative Oryza rufipogon. — Treatises Crop Res, Korea 4: 19–29, 2003.

    Google Scholar 

  • Cui, K.H., Peng, S.B., Xing, Y.Z., Xu, C.G., Yu, S.B., Zhang, Q.: Molecular dissection of seedling-vigor and associated physiological traits in rice. - Theor. Appl. Genet. 105:745–753, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Davidson, R.M., Gowda, M.G., Moghe, H., Lin, B., Vaillancourt, S.H., Shiu, N., Jiang, N., Buell, C.R.: Comparative transcriptomics of three Poaceae species reveals patterns of gene expression evolution. — Plant J. 71: 492–502, 2012.

    CAS  PubMed  Google Scholar 

  • Farquhar, G.D., Ehleringer, J.R., Hubick, K.T.: Carbon isotope discrimination and photosynthesis. — Annu. Rev. Plant Physiol. 40: 503–537, 1989.

    Article  CAS  Google Scholar 

  • Farquhar, G.D., Richards, R.A.: Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. — Aust. J. Plant Physiol. 11: 539–552, 1984.

    Article  CAS  Google Scholar 

  • Gonzaleg, L., Gonzaleg-viar, M.: Determination of relative water content. - In: Reigosa, R.M.J. (ed.): Hand Book of Plant Ecophysiology Techniques. Pp. 207–212. Kluwer Academic Publishers, New York 2001.

    Google Scholar 

  • Hanin, M., Brini, F., Ebel, C., Toda, Y., Takeda, S., Masmoudi, K.: Plant dehydrins and stress tolerance: versatile proteins for complex mechanisms. — Plant Signal Behav. 6: 1503–1509, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hariprasad, A.S.: Identification of new yield genes from land races in rice (Oryza sativa L.) through molecular marker approach. - PhD Thesis, Osmania University, Hyderabad 2003.

    Google Scholar 

  • Hittalmani, S., Shashidhar, H.E., Bagali, P.G., Huang, N., Sidhu, J.S., Singh, V.P., Khush, G.S.: Molecular mapping of quantitative trait loci for plant growth, yield and yield related traits across three diverse locations in a doubled haploid rice population. — Euphytica 125: 207–214, 2002.

    Article  CAS  Google Scholar 

  • Hua, J.P., Xing, Y.Z., Wu, W.R., Xu, C.G., Sun, X.L., Yu, S.B., Zhang, Q.: Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. — Proc. nat. Acad. Sci. USA 100: 2574–2579, 2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishimaru, K., Yano, M., Aoki, N., Ono, K., Hirose, T., Lin, S.Y., Monna, L., Sasaki, T., Ohsugi, R.: Toward the mapping of physiological and agronomic characters on a rice function map: QTL analysis and comparison between QTLs and expressed sequence tags. — Theor. appl. Genet. 102: 793–800, 2001.

    Article  CAS  Google Scholar 

  • Jan, A., Maruyama, K., Todaka, D., Kidokoro, S., Abo, M., Yoshimura, E., Shinozaki, K., Nakashima, K., Yamaguchi-Shinozaki, K.: OsTZF1, a CCCH-tandem zinc finger protein, confers delayed senescence and stress tolerance in rice by regulating stress-related genes. — Plant Physiol. 161: 1202–1216, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotla, A., Agarwal, S., Yadavalli, V.R. Vinukonda, V.P., Dhavala, V.N.C., Neelamraju, S.; Quantitative trait loci and candidate genes for yield and related traits in Madhukar × Swarna RIL population of rice - J. Crop Sci. Biotechnol. 16: 35–44, 2013.

    Article  Google Scholar 

  • Kulik, A., Wawer, I., Krzywińska, E., Bucholc, M., Dobrowolska, G.: SnRK2 protein kinases - key regulators of plant response to abiotic stresses - OMICS 15: 859–872, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laza, M.R., Kondo, M., Ideta, O., Barlaan, E., Imbe, T.: Identification of quantitative trait loci for 13C and productivity in irrigated lowland rice. — Crop Sci. 46: 763–773, 2006.

    Article  Google Scholar 

  • Li, H.W., Zang, B.S., Deng, X.W., Wang, X.P.: Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice. — Planta 234: 1007–1018, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Li, Z.K., Pinson, S.R.M., Paterson, A.H., Park, W.D., Stancel, J.W.: Epistasis for three grain yield components in rice (Oryza sativa L.). — Genetics 145: 453–465, 1997.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, H.X., Qian, H.R., Zhuang J.Y., Lu, J., Min, S.K., Xiong, Z.M., Huang, N., Zheng, K.L.: RFLP mapping of QTLs for yield and related characters in rice (Oryza sativa L.). — Theor. appl. Genet. 92: 920–927, 1996.

    Article  CAS  PubMed  Google Scholar 

  • Luo, L.J., Li, Z.K., Mei, H.W., Shu, Q.Y., Tabien, R., Zhong, D.B., Ying, C.S., Stansel, J.W., Khush, G.S., Paterson, A.H.: Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice grain yield components. — Genetics 158: 1755–1771, 2001.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marri, P.R., Sarla, N., Reddy, L.V., Siddiq, E.A.: Identification and mapping of yield and yield related QTLs from an Indian accession of Oryza rufipogon. — BMC Genet. 6: 33, 2005.

    Article  PubMed  PubMed Central  Google Scholar 

  • Moncada, P., Martinez, C.P., Borrero, J., Chatel, M., Gauch, H., Jr., Guimaraes, E., Tohme, J., McCouch, S.R.: Quantitative trait loci for yield and yield components in an Oryza sativa × Oryza rufipogon BC2F2 population evaluated in an upland environment. — Theor. appl. Genet. 102: 41–52, 2001

    Article  CAS  Google Scholar 

  • Monclus, R., Leple, J.C., Bastien, C., Bert, P.F., Villar, M., Marron, N., Brignolas, F.J.: Integrating genome annotation and QTL position to identify candidate genes for productivity, architecture and water-use efficiency in Populus spp. — BMC Plant Biol. 12: 173, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murray, M.G., Thompson, W.F.: Rapid isolation of high molecular weight plant DNA. — Nucl. Acids Res. 8: 4321–4325, 1980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen, V.N., Moon, S., Jung, K.H.: Genome-wide expression analysis of rice ABC transporter family across spatiotemporal samples and in response to abiotic stresses. — J. Plant Physiol. 171: 1276–1288, 2014.

    Article  CAS  PubMed  Google Scholar 

  • Oono, Y., Kawahara, Y., Kanamori, H., Mizuno, H., Yamagata, H., Yamamoto, M., Hosokawa, S.: mRNA-seq reveals a comprehensive transcriptome profile of rice under phosphate stress. - Rice 4: 50–65, 2011.

    Article  Google Scholar 

  • Price, A.H., Cairns, J.E, Horton, P., Jones, H.G., Griffiths, H.: Linking drought-resistance mechanisms to drought avoidance in upland rice using a QTL approach: progress and new opportunities to integrate stomatal and mesophyll responses. — J. exp. Bot. 53: 989–1004, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan, S., Gomez, S.M., Kumar, S.S., Ganesh, S.K., Biji, K.R., Senthil, A., Babu, R.C.: QTLs linked to leaf epicuticular wax, physio-morphological and plant production traits under drought stress in rice (Oryza sativa L.). — Plant Growth Regul. 56: 245–256, 2008.

    Article  CAS  Google Scholar 

  • Srividhya, A., Vemireddy, L.R., Sridhar, S., Jayaprada, M., Ramanarao, P.V., Hariprasad, A.S., Reddy, H.K., Anuradha, G., Siddiq E.A.: Molecular Mapping of QTLs for yield and its components under two water supply conditions in rice (Oryza sativa L.). — J. Crop Sci. Biotechnol. 14: 45–56, 2011.

    Article  Google Scholar 

  • Swamy, B.P., Ahmed, H.U., Henry, A., Mauleon, R., Dixit, S., Vikram, P., Tilatto, R., Verulkar, S.B., Perraju, P., Mandal, N.P., Variar, M., Robin, S., Chandrababu, R., Singh, O.N., Dwivedi, J.L., Das, S.P., Mishra, K.K., Yadav, R.B., Aditya, T.L., Karmakar, B., Satoh, K., Moumeni, A., Kikuchi, S., Leung, H., Kumar, A.: Genetic, physiological, and gene expression analyses reveal that multiple QTL enhance yield of rice mega-variety IR64 under drought. — PLoS ONE 8: e62795, 2013.

    Article  Google Scholar 

  • Takai, T., Ohsumi, A., San-oh, Y., Laza, M.R., Kondo, M., Yamamoto, T., Yano, M.: Detection of a quantitative trait locus controlling carbon isotope discrimination and its contribution to stomatal conductance in japonica rice. — Theor. appl. Genet. 118: 1401–1410, 2009.

    Article  CAS  PubMed  Google Scholar 

  • This, D., Comstock, J., Courtois, B., Xu, Y., Ahmadi, N., Vonhof, W.M., Fleet, C., Setter, T., S.: Genetic analysis of water use efficiency in rice (Oryza sativa L.) at the leaf level. — Rice 3: 72–86, 2010.

    Article  Google Scholar 

  • Todaka, D., Shinozaki, K., Yamaguchi-Shinozaki, K.: Recent advances in the dissection of drought-stress regulatory networks and strategies for development of drought-tolerant transgenic rice plants - Front. Plant Sci. 6: 84, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vemireddy, L.R., Noor, S., Satyavathi, V.V., Srividhya, A., Kaliappan, A., Parimala, S., Bharathi, P.M., Deborah, D.A., Rao, K.V., Shobharani, N., Siddiq, E.A., Nagaraju, J.: Discovery and mapping of genomic regions governing economically important traits of Basmati rice. — BMC Plant Biol. 15: 207, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang S., Basten, C.J., Zeng, Z.B.: Windows QTL Cartographer 2.5. - Department of Statistics, North Carolina State University, Raleigh 2012.

    Google Scholar 

  • Xiao, J., Hi, J., Yuan, L., Tansky, S.D.: Identification of QTLs affecting traits of agronomic importance in recombinant inbred population derived from a sub species cross. — Theor. appl. Genet. 92: 230–244, 1996.

    Article  CAS  PubMed  Google Scholar 

  • Xu, G.Y., Rocha, P.S., Wang, M.L., Xu, M.L., Cui, Y.C., Li, L.Y., Zhu, Y.X., Xia, X.: A novel rice calmodulin-like gene, OsMSR2, enhances drought and salt tolerance and increases ABA sensitivity in Arabidopsis. — Planta 234: 47–59, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Xu, Y., This, D., Pausch, R.C., Vonhof, W.M., Coburn, J.R., Comstock, J.P., McCouch, S.R.: Leaf-level water use efficiency determined by carbon isotope discrimination in rice seedlings: genetic variation associated with population structure and QTL mapping. — Theor. appl. Genet. 118: 1065–1081, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Yi, X., Du, Z., Su, Z.: Plant GSEA: a gene set enrichment analysis toolkit for plant community. — Nucl. Acids Res. 41: 98–103, 2013.

    Article  Google Scholar 

  • Yan, J., Zhu, J., He, C., Benmoussa, M., Wu, P.: Molecular marker assisted dissection of genotype × environment interaction for plant type traits in rice (Oryza sativa L.). - Crop Sci 39:538–544, 1999.

    Article  Google Scholar 

  • Yuan, A.P., Cao, L.Y., Zhuang, J.Y., Li, R.Z., Zheng, K. L., Zhu, J., Cheng, S.H.: Analysis of additive and A × E interaction effects of QTLs controlling plant height, heading date and panicle number in rice (Oryza sativa L.). — Acta genet. sin. 30: 900–906, 2003.

    Google Scholar 

  • Zhang, B., Ye, W., Ren, D., Tian, P., Peng, Y., Gao, Y., Ruan, B., Wang, L., Zhang, G., Guo, L., Qian, Q., Gao, Z.: Genetic analysis of flag leaf size and candidate genes determination of a major QTL for flag leaf width in rice. — Rice 8: 2, 2015.

    Article  PubMed Central  Google Scholar 

  • Zhang, Q., Li, J., Zhang, W., Yan, S., Wang, R., Zhao, J., Li, Y., Qi, Z., Sun, Z., Zhu, Z.: The putative auxin efflux carrier OsPIN3t is involved in the drought stress response and drought tolerance. — Plant J. 72: 805–816, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, G., Liu, F., Cao, J., Yue, B., Xiong, L.: Detecting quantitative trait loci for water use efficiency in rice using a recombinant inbred line population. — Chin. Sci. Bull. 56: 1481–1487, 2011.

    Article  CAS  Google Scholar 

  • Zou, G.H., Mei, H.W., Liu, H.Y., Liu, G.L., Hu, S.P., Yu, X.Q., Li, M.S., Wu, J.H., Luo, L.J.: Grain yield responses to moisture regimes in a rice population: association among traits and genetic markers. — Theor. appl. Genet. 112: 106–113, 2005.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. R. Vemireddy.

Additional information

authors contributed equally to this work.

Acknowledgements: L.R. Vemireddy acknowledges the Acharya NG Ranga Agricultural University (ANGRAU) for providing financial support under Rashtriya Krishi Vikas Yojana (RKVY). V. Roja acknowledges the ANGRAU for offering the Senior Research Fellowship under the RKVY scheme.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roja, V., Patil, S., Deborah, D.A. et al. Finding genomic regions and candidate genes governing water use efficiency in rice. Biol Plant 60, 757–766 (2016). https://doi.org/10.1007/s10535-016-0651-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-016-0651-1

Additional key words

Navigation