Skip to main content
Log in

Effect of asparagine, cysteine, citrulline, and glutamine on in vitro rooting and biochemical constituents in cherry rootstocks

  • Original Papers
  • Published:
Biologia Plantarum

Abstract

Effects of four amino acids, L-asparagine, L-cysteine, L-citrulline, and L-glutamine in different concentrations (0, 0.5, 1, and 2 mg dm-3) combined with 2 mg dm-3 indole-3-butyric acid, on in vitro rooting and biochemical constituents of cherry rootstocks CAB-6P (Prunus cerasus L.) and Gisela 6 (P. canescens × P. cerasus) were investigated. In CAB-6P, root number and root fresh mass (FM) were maximum at 0.5 mg dm-3 cysteine. All amino acids reduced root length in CAB-6P and root number as well as root FM in Gisela 6. In Gisela 6, 0.5 mg dm-3 asparagine or 2 mg dm-3 glutamine reduced root length. In CAB-6P, 100 % rooting was achieved in the control and with 1 and 2 mg dm-3 cysteine or 1 mg dm−3 citrulline. In Gisela 6, the rooting percentage was maximum (76.92 %) with 0.5 mg dm−3 asparagine. Callus FM in CAB-6P was the greatest at 1 mg dm−3 and in Gisela 6 at 2 mg dm−3 citrulline. Callusing was 100 % in the majority of treatments for CAB-6P and 92.31 % for Gisela 6 with 0.5 or 2 mg dm−3 citrulline. Cysteine, citrulline, and glutamine diminished chlorophyll content in Gisela 6 whereas in CAB-6P all four amino acids hardly affected it. Carotenoid and porphyrin content in CAB-6P was decreased due to asparagine (0.5 or 1 mg dm−3). Porphyrin content in CAB-6P was also reduced by adding 0.5 or 1 mg dm−3 cysteine or 2 mg dm−3 citrulline. In Gisela 6, all amino acids decreased carotenoid and porphyrin content. In CAB-6P, all treatments except 0.5 mg dm−3 glutamine or 2 mg dm−3 asparagine increased leaf sucrose content. In roots, both sucrose and proline content were increased only at 1 mg dm−3 cysteine whereas in leaves only 0.5 mg dm−3 asparagine caused a 3-fold increase in proline content. A decrease in root proline in CAB-6P was observed due to asparagine, citrulline, or glutamine. In Gisela 6, decreased leaf sucrose and proline content was recorded at 2 mg dm−3 cysteine. All amino acids did not alter root sugar content remarkably whereas root proline content was raised by adding 0.5 mg dm−3 glutamine or 1 mg dm−3 cysteine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AS:

asparagine synthase

2,4-D:

2,4-dichlorophenoxy acetic acid

DM:

dry mass

FM:

fresh mass

IAA:

indole-3-acetic acid

IBA:

indole-3-butyric acid

MS:

Murashige and Skoog

NAA:

α-naphthalene acetic acid

References

  • Abou El-Nil, M.M.: The effects of amino acid nitrogen on growth of date palm callus. — In: Proceedings of the 2nd Symposium on Date Palm. Pp. 59–65. King Faisal Univ., Al-Hassa 1989.

    Google Scholar 

  • Aguilar, R., Sanchez de Jimenez, E.: Amino acid pools and protein synthesis in germinating maize embryos. — Plant Cell Rep. 3: 193–195, 1984.

    Article  CAS  PubMed  Google Scholar 

  • Agulló-Antón, M.A., Sánchez-Bravo, J., Acosta, M., Druege, U.: Relation between light conditions and carbohydrate levels during the storage of carnation cuttings: effects on adventitious roots formation. — In: Proceedings of 5th International Symposium on Adventitious Root Formation; From Cell Fate Flexibility to Root Meristem Determination and Biomass Formation. Pp. 115–116. Alcalá de Henares, Madrid 2008.

    Google Scholar 

  • Ahkami, A.H, Melzer, M., Haensch, K.T., Franken, P., Hause, B., Druege, U., Hajirezaei, M.R.: Possible involvement of carbohydrate metabolism in adventitious root formation in Petunia hybrida cuttings. — In: Proceedings of 5th International Symposium on Adventitious Root Formation; From Cell Fate Flexibility to Root Meristem Determination and Biomass Formation. Pp. 81–82. Alcalá de Henares, Madrid 2008.

    Google Scholar 

  • Amin, A.A., Gharib, F.A.E., El-Awadi, M., Rashad, E.S.M.; Physiological response of onion plants to foliar application of putrescine and glutamine. — Sci. Hort. 3: 353–360, 2011.

    Article  Google Scholar 

  • Arce, P., Balboa, O.: Seasonality in rooting of Prosopis chilensis cuttings and in vitro micropropagation. — Forest Ecol. Manage. 40: 163–173, 1991.

    Article  Google Scholar 

  • Arulanantham, A.R., Rao, M., Terry, N.: Limiting factors in photosynthesis. — Plant Physiol. 93: 1466–1475, 1990.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Belonogova, M.A., Raldugina, G.N.: Root regeneration from cotyledon explants of fibre flax (Linum usitatissimum) and their subsequent rooting. — Russ. J. Plant Physiol. 53: 501–506, 2006.

    Article  CAS  Google Scholar 

  • Carvalho, D.C., Silva, A.L.L., Schuck, M.R., Purcino, M., Tanno, G.N., Biasi, L.A.: Fox grape cv. Bordô (Vitis labrusca L.) and grapevine cv. Chardonnay (Vitis vinifera L.) cultivated in vitro under different carbohydrates, amino acids and 6-benzylaminopurine levels. — Braz. Arch. Biol. Technol. 56: 191–201, 2013.

    Article  Google Scholar 

  • Cohen, J.D., Bialek, K.: The biosynthesis of indole-3-acetic acid in higher plants. — In: Crozier, A., Hillman, J.R. (ed.): The Biosynthesis and Metabolism of Plant Hormones. Pp. 165–181. Cambridge University Press, Cambridge 1984.

    Google Scholar 

  • Correa, L.R., Stein, R.J., Fett-Neto, A.G.: Adventitious rooting of detached Arabidopsis thaliana leaves. — Biol. Plant. 56; 25–30, 2012.

    Article  CAS  Google Scholar 

  • Coruzzi, G., Last, R.: Amino acids. — In Buchanan, B., Gruissem, W., Jones, R. (ed.): Biochemistry and Biology of Plants. Pp. 358–410. American Society of Plant Physiologists, Maryland 2000.

    Google Scholar 

  • De Filippis, L.F., Hampp, R., Ziegler, H.: The effects of sublethal concentrations of zinc, cadmium and mercury on Euglena growth and pigments. — Z. Pflanzenphysiol. 101; 37–47, 1981.

    Article  Google Scholar 

  • Dolatabadian, A., Jouneghani, R.S.: Impact of exogenous ascorbic acid on antioxidant activity and some physiological traits of common bean subjected to salinity stress. — Not. Bot. Hort. Agrobot. Cluj 37: 165–172, 2009.

    CAS  Google Scholar 

  • El-Shiaty, O.H., El-Sharabasy, S.F., Abd El-Kareim, A.H.; Effect of some amino acids and biotin on callus and proliferation of date palm (Phoenix dactylifera L.) Sewy cultivar. — Arab. J. Biotechnol. 7: 265–272, 2004.

    Google Scholar 

  • Faye, M., Ourry, A., Saidali-Savi, C., Dargent, R., Boucaud, J., David, A.: Effects of glutamine and K-glutamate on assimilation of [15N]-nitrate during auxin treatment for root formation in vitro (Pinus pinaster). — Physiol. Plant. 76; 277–282, 1989.

    Article  CAS  Google Scholar 

  • Filner, P.: Regulation of nitrate reductase in cultured tobacco cells. — Biochem. biophys. Acta 118: 299–310, 1966.

    CAS  PubMed  Google Scholar 

  • Fukunaga, Y., King, J.: The effect of L-amino acid on the growth and nitrate reductase activity in cultured cells of Datura innoxia. — Plant. Sci. Lett. 24: 45, 1982.

    Article  CAS  Google Scholar 

  • George, E.F., Hall, M.A., De Klerk, G.J.: Plant Propagation by Tissue Culture. 3rd Ed. — Springer, Dordrecht 2008.

    Google Scholar 

  • Grimes, H.D., Hodges, T.K.: The inorganic NO3:NH4 ratio influences plant regeneration and auxin sensitivity in primary callus derived from immature embryos of indica rice (Oryza sativa L.). — J. Plant Physiol. 136: 362–367, 1990.

    Article  CAS  Google Scholar 

  • Groot, C.C., Marcelis, L.F., Boogaard, R., Kaise, W.M., Lambers, H.: Interaction of nitrogen and phosphorus nutrition in determining growth. — Plant Soil 248: 257–268, 2003.

    Article  Google Scholar 

  • Haissig, B.E.: Metabolic process in adventitious rooting of cuttings. — In Jackson, B.M. (ed.): New Root Formation in Plants and Cuttings. Pp. 141–189. Martinus Nijhoff, Dordrecht 1986.

    Chapter  Google Scholar 

  • Hamasaki, R.M., Purgatto, E., Mercier, H.: Glutamine enhances competence for organogenesis in pineapple leaves cultivated in vitro. — Braz. J. Plant Physiol. 17: 383–389, 2005.

    Article  CAS  Google Scholar 

  • Haroun, S.A., Shukry, W.M., El-Sawy, O.: Effect of asparagine or glutamine on growth and metabolic changes in Phaseolus vulgaris under in vitro conditions. — Bioscience Res. 7: 1–21, 2010.

    Google Scholar 

  • Haq, I.U., Soomro, F., Parveen, N., Dahot, M.U., Mirbahar, A.A.: Certain growth related attributes of micropropagated banana under different salinity levels. — Pak. J. Bot. 43; 1655–1658, 2011.

    CAS  Google Scholar 

  • Jabeen, F., Shahbaz, M., Ashraf, M.: Discriminating some prospective cultivars of maize (Zea mays L.) for drought tolerance using gas exchange characteristics and proline contents as physiological markers. — Pak. J. Bot. 40: 2329–2343, 2008.

    Google Scholar 

  • James, D.J.: Adventitious root formation ’in vitro’ in apple rootstocks (Malus pumila) I. Factors affecting the length of the auxin-sensitive phase in M.9. — Physiol. Plant. 57: 149–153, 1983a.

    Article  CAS  Google Scholar 

  • James, D.J.: Adventitious root formation ’in vitro’ in apple rootstocks (Malus pumila) II. Uptake and distribution of indole-3-acetic acid during the auxin sensitive phase in M.9 and M.26. — Physiol. Plant. 57: 154–158, 1983b.

    Article  CAS  Google Scholar 

  • Kakkar, R.K., Rai, V.K.: Effect of exogenous amino acid application on rhizogenesis in hypocotyl cuttings of Phaseolus vulgaris L. — Curr. Sci. 2: 82–84, 1988.

    Google Scholar 

  • Kamada, H., Harada, H.: Influence of several growth regulators and amino acids on in vitro organogenesis of Torenia fournieri Lind. — J. exp. Bot. 30: 27–36, 1979.

    Article  CAS  Google Scholar 

  • Kavi Kishor, P.B.: Aromatic amino acid metabolism during organogenesis in rice callus culture. — Physiol. Plant. 75; 395–398, 1989.

    Article  CAS  Google Scholar 

  • Kazemi, M., Gholami, M., Asadi, M., Aghdasi, S., Almasi, M.; Response of carnation (Dianthus caryophyllus L.) to salicylic acid and glutamine. — Asian J. Biochem. 7: 158–164, 2012.

    Article  Google Scholar 

  • Khan, A.A., McNeilly, T., Collins, C.: Accumulation of amino acids, proline, and carbohydrates in response to aluminium and manganese stress in maize. — J. Plant Nutr. 23: 1303–1314, 2000.

    Article  CAS  Google Scholar 

  • Kim, Y.W., Moon, H.K.: Enhancement of somatic embryogenesis and plant regeneration in Japanese larch (Larix leptolepis). — Plant Cell Tissue Organ Cult. 88: 241–245, 2007.

    Article  CAS  Google Scholar 

  • Kumar, S.P., Kumari, B.D.R.: Effect of amino acids and growth regulators on indirect organogenesis in Artemisia vulgaris L. — Asian J. Biotechnol. 2: 37–45, 2010.

    Article  Google Scholar 

  • Lichenthaler, H.K.: Chlorophylls and carotenoids: pigments of photosynthetic biomembrane. — Methods Enzymol. 148; 350–382, 1987.

    Article  Google Scholar 

  • Liu, Y., Tong, X., Hui, W., Liu, T., Chen, X., Li, J., Zhuang, C., Yang, Y., Liu Z.: Efficient culture protocol for plant regeneration from petiole explants of physiologically mature trees of Jatropha curcas L. — Biotechnol. Biotechnol. Equip. 2015. http://dx.doi.org/10.1080/13102818.2015.1013308.

  • Locy, R.D., Wehner, T.C.: Cucumber shoot tip growth on 9 nitrogen sources in in vitro culture. — Cucurbit Gen. Cooperative Rep. 5: 10–11, 1982.

    Google Scholar 

  • Lokhande, A.A., Gaikwad, D.K.: Effect of plant growth regulators on photosynthetic pigments and products of two onion varieties. — Indian J. Adv. Plant Res. 1: 15–18, 2014.

    Google Scholar 

  • Macháčková, I., Zažímalová, E., George, E.F.: Plant growth regulators I: Introduction; auxins, their analogues and inhibitors. — In: George, E.F., Hall, M.A., De Klerk, G.J. (ed.): Plant Propagation by Tissue Culture. Pp. 175–204. Springer, Dordrecht 2008.

    Google Scholar 

  • Murashige, T., Skoog, F.: A revised medium for rapid growth and bioassays with tobacco tissue cultures. — Physiol. Plant. 15: 473–497, 1962.

    Article  CAS  Google Scholar 

  • Nasholm, T., Persson, J.: Plant acquisition of organic nitrogen in boreal forests. — Physiol. Plant. 111: 419–426, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Nunes, E.N., Montenegro, I.N.A., Fernandez, Y.T.D., Nansimento, D.A.M., Nansimento, R., Alvez, C.A.B., Souto, J.S.: Biochemical responses of maize (Zea mays L.) cultivars subjected to nitrate and glutamine fertilizers. — Afr. J. agr. Res. 9: 3663–3671, 2014.

    Google Scholar 

  • Orlikowska, T.: Effect of amino acids on rooting of apple dwarf rootstocks in vitro. — Biol. Plant. 34: 39–44, 1992.

    Article  CAS  Google Scholar 

  • Pedrotti, E.L., Allemand, C.J., Doumas, P., Cornu, D.: Effect of autoclaving amino acids on in vitro rooting response of wild cherry shoot. — Sci. Horticult. 57: 89–98, 1994.

    Article  CAS  Google Scholar 

  • Plummer, D.T.: Practical Biochemistry. 3rd Ed. — McGraw-Hill Book Company, New York 1987.

    Google Scholar 

  • Polanuer, B., Sholi A., Demina, N., Rumiantseva, N.; Determination of glutamine, glutamate acid and pyroglutamate acids using high-performance liquid chromatography on dynamically modified silica. — J. Chromatogr. 594: 173–178, 1992.

    Article  CAS  Google Scholar 

  • Porra, R.J., Thompson, W.A., Kriedelman, P.E.: Determination of accurate extraction and simultaneously equation for assaying chlorophyll a and b extracted with different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. — Biochim. biophys. Acta 975: 384–394, 1989.

    Article  CAS  Google Scholar 

  • Pritsa, T.S., Voyiatzis, D.G.: The in vitro morphogenetic capacity of olive embryo explants at different developmental stages, as affected by L-glutamine, L-arginine and 2,4-D. — J. biol. Res. 1: 55–61, 2004.

    CAS  Google Scholar 

  • Ranga Rao, G.V., Prasad, M.N.V.: Plant regeneration from the hypocotyl callus of Acacia auriculiformis /multipurpose tree legume. — J. Plant Physiol. 137: 625–627, 1991.

    Article  Google Scholar 

  • Sauerbrey, E., Grossmann, K., Jung, J.: Ethylene production by sunflower cell suspensions. — Plant Physiol. 87: 510–513, 1988.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shahriari, A.M., Bagheri, A., Sharifi, A., Moshtaghi, N.; Efficient regeneration of ‘Caralis’ Alstroemeria cultivar from rhizome explants. — Not. Sci. Biol. 4: 86–90, 2012.

    CAS  Google Scholar 

  • Shahsavari, E.: Impact of tryptophan and glutamine on the tissue culture of upland rice. — Plant Soil Environ. 57: 7–10, 2011.

    Article  CAS  Google Scholar 

  • Shanhani, P.S.: Nitrogen effect on callus induction and plant regeneration of Juniperus excelsa. — Int. J. Agr. Biol. 5: 419–422, 2003.

    Google Scholar 

  • Shibaoka, H., Mitsuhashi, M., Shimokoriyama, M.: Promotion of adventitious root formation by heliangine and its removal by cysteine. — Plant Cell Physiol. 8: 161–170, 1967.

    CAS  Google Scholar 

  • Shohael, A.M., Akanda, M.A.L., Parvez, S., Mahfuja, S., Alam, M.F., Islam, F., Joarder, N.: Somatic embryogenesis and plant regeneration from immature embryo derived callus of inbred maize (Zea mays L.). — Biotechnology 2: 154–161, 2003.

    Article  Google Scholar 

  • Siwach, P., Chanana, S., Gill, A.R., Dhanda, P., Rani, J., Sharma, K., Rani, H., Kumari, D.: Effects of adenine sulphate, glutamine and casein hydrolysate on in vitro shoot multiplication and rooting of Kinnow mandarin (Citrus reticulata Blanco). — Afr. J. Biotechnol. 11: 15852–15862, 2012.

    CAS  Google Scholar 

  • Sotiropoulos, T.E., Dimassi, K.N., Therios, I.N.: Effects of L-arginine and L-cysteine on growth, and chlorophyll and mineral contents of shoots of the apple rootstock EM 26 cultured in vitro. — Biol. Plant. 49: 443–445, 2005.

    Article  CAS  Google Scholar 

  • Sudarsana Rao, G.V, Chandra, R., Polisetty, R.: Role of amino acids in evolution of ethylene and methane, and development of microshoots in Cajanus cajan. — Biol. Plant. 44: 13–18, 2001.

    Article  CAS  Google Scholar 

  • Taha, H.S., El-Bahr, M.K., Seif-El-Nasr, M.M.: In vitro studies on Egyptian Catharanthus roseus L.G. Don. IV; Manipulation of some amino acids as precursors for enhanced of indole alkaloids production in suspension cultures. Aust. J. basic appl. Sci. 3: 3137–3144, 2009.

    CAS  Google Scholar 

  • Troll, W., Lindsley, J.: A photometric method for determination of proline. — J. biol. Chem. 215: 655–660, 1955.

    CAS  PubMed  Google Scholar 

  • Tsuji, M., Kuwano, E., Saito, T., Eto, M.: Root growthpromoting activities of N-acetyl-L-proline derivatives. — Biosci. Biotech. Biochem. 56: 778–782, 1992.

    Article  CAS  Google Scholar 

  • Watanabe, S., Katsumi, K., Yuji, I., Sasaki, S.: Effects of saline and osmotic stress on proline and sugar accumulation in Populus euphratica in vitro. — Plant Cell Tissue Organ Cult. 63: 199–206, 2001.

    Article  Google Scholar 

  • Welander, T.: Influence of nitrogen and sucrose in the medium and of irradiance of the stock plants on root formation in Pelargonium petioles grown in vitro. — Physiol. Plant. 43; 136–141, 1978.

    Article  CAS  Google Scholar 

  • Wintermans, J.F.G.M., De Mots, A.: Spectrophotometric characteristics of chlorophylls a and b and their pheophytins in ethanol. — Biochim. biophys. Acta 109: 448–453, 1965.

    Article  CAS  PubMed  Google Scholar 

  • Yang, C.M., Chang, K.W., Yin, M.H., Hung, H.M.: Methods for the determination of the chlorophylls and their derivatives. — Taiwania 43: 116–122, 1998.

    Google Scholar 

  • Zhang, H., Jennings, A., Barlow, W.P., Forde, G.B: Dual pathways for regulation of root branching by nitrate. — Plant Biol. 96: 6529–6534, 1999.

    CAS  Google Scholar 

  • Zhu, M., Xu, A., Yuan, M., Huang, C.H., Yu, Z., Wang, L., Yu, J.: Effects of amino acids on callus differentiation in barley anther culture. — Plant Cell Tissue Organ Cult. 22: 201–204, 1990.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Sarropoulou.

Additional information

Acknowledgements: We would like to express our sincere gratitude to the Fitotechniki Bros Company and especially to Angelos Xylogiannis for kindly providing the CAB-6P and Gisela 6 rootstocks, and to Sofia Kuti and Vasiliki Tsakiridou for technical assistance. The authors gratefully acknowledge the financial support of Aristotle University of Thessaloniki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarropoulou, V., Chatzissavvidis, C., Dimassi-Theriou, K. et al. Effect of asparagine, cysteine, citrulline, and glutamine on in vitro rooting and biochemical constituents in cherry rootstocks. Biol Plant 60, 1–12 (2016). https://doi.org/10.1007/s10535-015-0562-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-015-0562-6

Additional key words

Navigation