Skip to main content

Advertisement

Log in

Embracing new-generation ‘omics’ tools to improve drought tolerance in cereal and food-legume crops

  • Review
  • Published:
Biologia Plantarum

Abstract

Drought stress presents a considerable threat to the global crop production. As a dominant source of vegetarian diet, cereals and grain-legumes remain crucial to meeting the growing dietary demands worldwide. Therefore, breeding cultivars of these staple crops with enhanced drought tolerance stands to be one of the most sustainable solutions to enhance food production in changing climate. Given the context, a more focused survey of environment-defined germplasm sets is imperative to comprehend such adaptive traits. In parallel, uncovering the genetic architecture and the molecular networks that collectively contribute towards drought tolerance is urgently required through rationally combining large-scale genomics, proteomics, and metabolomics data. Also, attention needs to be directed to reasonably quantify the epistatic as well as environmental influences, thereby warranting deployment of analyses like metaquantitative trait loci (QTL) that encompass multiple environments and diverse genetic backgrounds. Further, innovative techniques like genomic selection (GS) and genome wide association study (GWAS) would help to capture the quantitative variation underlying drought tolerance. Equally importantly, integration of physiological traits-based techniques with ever-evolving ‘omics’ technologies and the new-generation phenotyping platforms will be of immense importance in advancing our existing knowledge about the genetically-complex and poorly-understood phenomena, such as plant drought response, and a deeper understanding would likely to provide a great impetus to the progress of crop breeding for drought tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ABA:

abscisic acid

AM:

association mapping

CAPS:

cleaved amplified polymorphic sequence

DH:

double haploid

EST:

expressed sequence tag

GS:

genomic selection

GWAS:

genome wide association study

GWP:

genome wide prediction

LD:

linkage disequilibrium

MABC:

marker-assisted backcrossing

MARS:

marker assisted recurrent selection

MPSS:

massively parallel signature sequencing

MAS:

marker-assisted selection

NGS:

next generation sequencing

NIL:

near isogenic line

PCR:

polymerase chain reaction

QTLs:

quantitative trait loci

RIL:

recombinant inbred line

RT-PCR:

reverse trascriptase PCR

RWC:

relative water content

SAGE:

serial analysis of gene expression

SSR:

simple sequence repeat

SNP:

single nucleotide polymorphism

WUE:

water use efficiency

References

  • Abdallah, A.A., Ali, A.M., Geiger, H.H., Parzies, H.K.: Markerassisted recurrent selection for increased out crossing in caudatum-race Sorghum. — In: Proceedings of the International Conference on Applied Biotechnology. Pp. 4. Khartoum 2009.

  • Acuña-Galindo, M.A., Mason, R.E., Subramanian, N.K., Hays, D.B. Meta-analysis of wheat QTL regions associated with adaptation to drought and heat stress. — Crop Sci. 55: 477–492, 2015.

    Google Scholar 

  • Adam, J.: Transcriptome: connecting the genome to gene function. — Nature Educ. 1: 1, 2008.

    Google Scholar 

  • Adamski, J.: Genome-wide association studies with metabolomics. — Genome Medicine 4: 34, 2012.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ahmed, F.E., Suliman, A.S.H.: Effect of water stress applied at different stages of growth on seed yield and water-use efficiency of cowpea. — Agr. Biol. J. N. Amer. 1: 534–540, 2010.

    Google Scholar 

  • Almeida, G.D., Makumbi, D., Magorokosho, C., Nair, S., Borém, A., Ribaut, J.M., Bänziger, M., Prasanna, B.M., Crossa, J., Babu, R.: QTL mapping in three tropical maize populations reveals a set of constitutive and adaptive genomic regions for drought tolerance. — Theor. appl. Genet. 126: 583–600, 2013.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Almeida, G.D., Nair, S., Borém, A., Cairns, J., Trachsel, S., Ribaut, J.M., Babu, R.: Molecular mapping across three populations reveals a QTL hotspot region on chromosome 3 for secondary traits associated with drought tolerance in tropical maize. — Mol. Breed. 34: 701–715, 2014.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alvarez, S., Marsh, E.L., Schroeder, S.G., Schachtman, D.P.: Metabolomic and proteomic changes in the xylem sap of maize under drought. — Plant Cell Environ. 31: 325–340, 2008.

    CAS  PubMed  Google Scholar 

  • Ameen, T.E.: Molecular markers for drought tolerance in bread wheat. — Afr. J. Biotechnol. 12: 3148–3152, 2013.

    Google Scholar 

  • Anbazhagan, K., Bhatnagar-Mathur, P., Vadez, V., Dumbala, S.R., Kishor, P.B., Sharma, K.K.: DREB1A overexpression in transgenic chickpea alters key traits influencing plant water budget across water regimes. — Plant Cell Rep. 34: 199–210, 2015.

    CAS  PubMed  Google Scholar 

  • Andersen, J.R., Lübberstedt, T.: Functional markers in plants. — Trends Plant Sci. 8: 554–560, 2003.

    CAS  PubMed  Google Scholar 

  • Anjum, S.A., Xie, X., Wang, L.C., Saleem, M.F., Man, C., Lei, W.: Morphological, physiological and biochemical responses of plants to drought stress. — Afr. J. agr. Res. 6: 2026–2032, 2011.

    Google Scholar 

  • Ansong, C., Purvine, S.O., Adkins, J.N., Lipton, M.S., Smith R. D.: Proteogenomics: needs and roles to be filled by proteomics in genome annotation. — Brief. Funct. Genomics Proteomics 7: 50–62, 2008.

    CAS  Google Scholar 

  • Ariel, F.D., Manavella, P.A., Dezar, C.A., Chan, R.L.: The true story of the HD-Zip family. — Trends Plant Sci. 12: 419–426, 2007.

    CAS  PubMed  Google Scholar 

  • Asfaw, A., Blair, M.W., Struik, P.: Multienvironment quantitative trait loci analysis of photosynthate acquisition, accumulation, and remobilization traits in common bean under drought stress. — Genes Genomes Genet. 5: 579–595, 2012.

    Google Scholar 

  • Ashikari, M., Matsuoka, M.: Identification, isolation and pyramiding of quantitative trait loci for rice breeding. — Trends Plant Sci. 11: 344–350, 2006.

    CAS  PubMed  Google Scholar 

  • Ashraf, M.: Inducing drought tolerance in plants: recent advances. — Biotechnol. Adv. 28: 169–183, 2010.

    CAS  PubMed  Google Scholar 

  • Ashraf, M., Foolad, M.R.: Roles of glycine betaine and proline in improving plant abiotic stress resistance. — Environ. exp. Bot. 59: 206–216, 2007.

    CAS  Google Scholar 

  • Babu, C.R., Nguyen, B.D., Chamarerk, V., Shanmugasundaram, P., Chezhian, P., Juyaprakash, P., Ganesh, S.K., Palchamy, A., Sadasivam, S., Sarkarung, S., Wade, L.J., Nguyen, T.H.: Genetic analysis of drought resistance in rice by molecular markers: association between secondary traits and field performance. — Crop Sci. 43: 1457–1469, 2003.

    CAS  Google Scholar 

  • Baginsky, S., Hennig, L., Zimmermann, P., Gruissem, W.: Gene expression analysis, proteomics, and network discovery. — Plant Physiol. 152: 402–410, 2010.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barakat, M.N., Wahiba, L.E., Milad, S.I.: Molecular mapping of QTLs for wheat flag leaf senescence under water stress. — Biol. Plant. 57: 79–84, 2013.

    CAS  Google Scholar 

  • Bartels, D., Sunkar, R.: Drought and salt tolerance in plants. — Crit. Rev. Plant Sci. 24: 23–58, 2005.

    CAS  Google Scholar 

  • Beltrano, J., Ronco, M.G., Arango, A.C.: Soil drying and rewatering applied at three grain developmental stages affect differentially growth and grain protein deposition in wheat (Triticum aestivum L.). — Braz. J. Plant Physiol. 18: 341–350, 2006.

    CAS  Google Scholar 

  • Bergelson, J., Roux, F.: Towards identifying genes underlying ecologically relevant traits in Arabidopsis thaliana. — Nat. Rev. Genet. 11: 867–879, 2010.

    CAS  PubMed  Google Scholar 

  • Bernardo, R.: Molecular markers and selection for complex traits in plants: learning from the last 20 years. — Crop Sci. 48: 1649–166, 2008.

    Google Scholar 

  • Bernardo, R., Charcosset, A.: Usefulness of gene information in marker-assisted recurrent selection: a simulation appraisal. — Crop Sci. 46:614–621, 2006.

    Google Scholar 

  • Bernier, J., Kumar, A., Venuprasad, R., Spaner, D., Atlin, G.: A large-effect QTL for grain yield under reproductive-stage drought stress in upland rice. — Crop Sci. 47: 507–518, 2007.

    Google Scholar 

  • Beyene, Y., Semagn, K., Mugo, S., Tarekegne, A., Babu, R., Meisel, B., Sehabiague, P., Makumbi, D., Magorokosho, C., Oikehm S., Gakunga, J., Vargas, M., Olsen, M., Prasanna, B.M., Banziger, M., Crossa, J.: Genetic gains in grain yield through genomic selection in eight bi-parental maize populations under drought stress. — Crop. Sci. 55: 154–163, 2015.

    Google Scholar 

  • Bohra, A., Sahrawat, K.L., Kumar, S., Joshi, R., Parihar, A.K., Singh, U., Singh, D., Singh, N.P.: Genetics- and genomicsbased interventions for nutritional enhancement of grain legume crops: status and outlook. — J. appl. Genet. 56: 151–161, 2015.

    CAS  PubMed  Google Scholar 

  • Bohra, A.: Emerging paradigms in genomics-based crop improvement. — Sci. World J. 585467: 17, 2013.

    Google Scholar 

  • Bohra, A., Jha, U.C., Kavi Kishor, P.B., Pandey, S., Singh, N.P.: Genomics and molecular breeding in lesser explored pulse crops: current trends and future opportunities. — Biotechnol. Adv. 32: 1410–1428, 2014a.

    CAS  PubMed  Google Scholar 

  • Bohra, A., Pandey, M.K., Jha, U.C., Singh, B., Singh, I.P., Datta, D., Chaturvedi, S.K., Nadarajan, N., Varshney, R. K.: Genomics-assisted breeding in four major pulse crops of developing countries: present status and prospects. — Theor. appl. Genet. 127: 1263–1291, 2014b.

    PubMed Central  PubMed  Google Scholar 

  • Bolaños, J., Edmeades, G.O.: The importance of the anthesissilking interval in breeding for drought tolerance in tropical maize. — Field Crop. Res. 48: 65–80, 1996.

    Google Scholar 

  • Boyer, J.S.: Plant productivity and environment. — Science 218: 443–448, 1982.

    CAS  PubMed  Google Scholar 

  • Bray, E.A., Bailey-Serres, J., Weretilnyk, E.: Responses to abiotic stresses. — In Gruissem, W., Buchannan, B., Jones, R. (ed.): Biochemistry and Molecular Biology of Plants. Pp. 1158–1249. American Society of Plant Physiologists. Rockville 2000.

  • Cabrera-Bosquet, L., Crossa, J., Von Zitzewitz, J., Dolors Serret, M., Araus, J.L.: High-throughput phenotyping and genomic selection: the frontiers of crop breeding converge. — J. Intergr. Plant Biol. 54: 312–320, 2012.

    Google Scholar 

  • Castañeda-Saucedo, M.C., Córdova-Téllez, L., Tapia-Campos, E., Delgado-Alvarado, A., González-Hernández, V.A., Santacruz-Varela, A., Loza-Tavera, H., García-de-los-Santos, G., Vargas-Suárez, M.: Dehydrins patterns in common bean exposed to drought and watered conditions. — Rev. Fitotec. Mex. 37: 59–68, 2014.

    Google Scholar 

  • Charlton, A.J., Donarski, J.A., Harrison, M., Jones, S.A., Godward, J., Oehlschlager, S., Arques, J.L., Ambrose, M., Chinoy, C., Mullineaux, P.M., Domoney, C.: Responses of the pea (Pisum sativum L.) leaf metabolome to drought stress assessed by nuclear magnetic resonance spectroscopy. — Metabolomics 4: 312–327, 2008.

    CAS  Google Scholar 

  • Charmet, G., Robert, N., Perretant, M.R., Gay, G., Sourdille, P., Groos, C., Bernard, S., Bernard M.: Marker assisted recurrent selection for cumulating QTLs for bread-making related traits. — Euphytica 119: 89–93, 2001.

    CAS  Google Scholar 

  • Cheng, H.T., Hua, J., Xue, D.W., Guo, L.B., Zeng, D.L., Zang, G.H., Qian, Q.: Mapping of QTL underlying tolerance to alkali at germination and early seedling stages in rice. — Acta agron. sin. 34: 1719–1727, 2008.

    CAS  Google Scholar 

  • Clarke, J.M.: Effect of leaf rolling on leaf water loss in Triticum spp. — Can. J. Plant. Sci. 66: 885–891, 1986.

    Google Scholar 

  • Collard, B.C.Y., Mackill, D.J.: Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. — Phil. trans. roy. Soc. B. Biol. Sci. 363: 557–572, 2008.

    CAS  Google Scholar 

  • Collins, N.C., Tardieu, F., Tuberosa, R.: Quantitative trait loci and crop performance under abiotic stress: where do we stand? — Plant Physiol. 147: 469–486, 2008.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Costa Franca, M.G., Pham-Thi, A.T., Pimentel, C., Pereyra Rossiello, R.O., Zuily-Fodil, Y., Laffray, D.: Differences in growth and water relations among Phaseolus vulgaris cultivars in response to induced drought stress. — Environ. exp. Bot. 43: 227–237, 2000.

    PubMed  Google Scholar 

  • Courtois, B., Ahmadi, N., Khowaja, F., Price, A., Rami, J.-F., Frouin, J., Hamelin, C., Ruiz, M.: Rice root genetic architecture: meta-analysis from a drought QTL database. — Rice 2: 115–128, 2009.

    Google Scholar 

  • Courtois, B., Audebert, A., Dardou, A., Roques, S., Herrera, T.G., Droc, G., Frouin, J., Rouan, L., Gozé, E., Kilian, A., Ahmadi, N., Dingkuhn, M.: Genome-wide association mapping of root traits in a japonica rice panel. — PLoS One 8: e78037, 2013.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cubillos, F.A., Coustham, V., Loudet, O.: Lessons from eQTL mapping studies: non-coding regions and their role behind natural phenotypic variation in plants. — Curr. Opin. Plant Biol. 15: 192–198, 2012.

    CAS  PubMed  Google Scholar 

  • Degenkolbe, T., Do, P.T., Kopka, J., Zuther, E., Hincha, D.K., Kohl, K.I.: Identification of drought tolerance markers in a diverse population of rice cultivars by expression and metabolite profiling. — PLoS One 8: e63637, 2013.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Du, F., Shi, H., Zhang, X., Xu, X.: Responses of reactive oxygen scavenging enzymes, proline and malondialdehyde to water deficits among six secondary successional seral species in Loess plateau. — PLoS One 9: e98872, 2014.

    PubMed Central  PubMed  Google Scholar 

  • Dugas, D., Monaco, M., Olsen, A., Klein, R., Kumari, S., Ware, D., Klein, P. E.: Functional annotation of the transcriptome of Sorghum bicolor in response to osmotic stress and abscisic acid. — BMC Genomics 12: 514, 2011.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dwivedi, S.L., Crouch, J.H., Nigam, S.N., Ferguson, M.E., Paterson, A.H.: Molecular breeding of groundnut for enhanced productivity and food security in the semi-arid tropics: opportunities and challenges. — Adv. Agron. 80: 154–201, 2003.

    Google Scholar 

  • Eathington, S.R., Crosbie, T.M., Edwards, M.D., Reiter, R.S., Bull, J.K.: Molecular markers in a commercial breeding program. — Crop Sci. 2007(Suppl.): S154, 2007.

    Google Scholar 

  • Ekanayake, I.J., Datta, S.K., Steponkus, P.L.: Spikelet sterility and flowering response of rice to water stress at anthesis. — Ann. Bot. 63: 257–264, 1989.

    Google Scholar 

  • Eldakak, M., Milad, S.I.M., Nawar, A.I., Rohila, J.S.: Proteomics: a biotechnology tool for crop improvement. — Front. Plant Sci. 4: 35, 2013.

    PubMed Central  PubMed  Google Scholar 

  • Elouafi, I., Nachit, M.M.: A genetic linkage map of the durum wheat × Triticum dicoccoides backcross population based on SSRs and AFLP markers, and QTL analysis for milling traits. — Theor. appl. Genet. 108: 401–413, 2004.

    CAS  PubMed  Google Scholar 

  • Fernie, A.R., Schauer N.: Metabolomics-assisted breeding: a viable option for crop improvement? — Trends Genet. 25: 39–48, 2008.

    PubMed  Google Scholar 

  • Ford, K.L., Cassin, A., Bacic, A.: Quantitative proteomic analysis of wheat cultivars with differing drought stress tolerance. — Front. Plant Sci. 2: 44, 2011.

    PubMed Central  PubMed  Google Scholar 

  • Fridman. E., Zamir, D.: Next-generation education in crop genetics. — Curr. Opin. Plant Biol. 15: 218–223, 2012.

    PubMed  Google Scholar 

  • Fujino, K., Sekiguchi, H., Sato, T., Kiuchi, H., Nonoue, Y., Takeuchi, Y., Ando, T., Lin, S.Y., Yano, M.: Mapping of quantitative trait loci controlling low-temperature germinability in rice (Oryza sativa L.). — Theor. appl. Genet. 108: 794–799, 2004.

    CAS  PubMed  Google Scholar 

  • Fujita, Y., Fujita, M., Satoh, R., Maruyama, K., Parvez, M.M., Seki, M., Hiratsu, K., Ohme-Takagi, M., Shinozaki, K., Yamaguchi-Shinozaki, K.: AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. — Plant Cell 17: 3470–3488, 2005.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ghosh, D., Xu, J.: Abiotic stress responses in plant roots: a proteomics perspective. — Front. Plant Sci. 54: 6, 2014.

    Google Scholar 

  • Gimeno, J., Eattock, N., Deynze, A.V., Blumwald, E.: Selection and validation of reference genes for gene expression analysis in switchgrass (Panicum Virgatum) using quantitative real-time RT-PCR. — PLoS One 9: e91474, 2014.

    PubMed Central  PubMed  Google Scholar 

  • Giuliani, S., Sanguineti, M.C., Tuberosa, R., Bellotti, M., Salvi, S., Landi, P.: Root-ABA1, a major constitutive QTL, affects maize root architecture and leaf ABA concentration at different water regimes. — J. exp. Bot. 56: 3061–3070, 2005.

    CAS  PubMed  Google Scholar 

  • Goddard, M.E., Hayes, B.J.: Genomic selection. — J. Anim. Breed. Genet. 12: 323–330, 2007.

    Google Scholar 

  • Gomez, S.M., Boopathi, N.M., Kumar, S.S., Ramasubramanian, T., Chengsong, Z., Jeyaprakash, P., Senthil, A., Babu, R.C.: Molecular mapping and location of QTLs for droughtresistance traits in indica rice (Oryza sativa L.) lines adapted to target environments. — Acta Physiol. Plant 32: 355–364, 2010.

    Google Scholar 

  • Graham, P.H., Vance, C.P.: Legumes: importance and constraints to greater use. — Plant Physiol. 131: 872–877, 2003.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grenier, C., Chatel, M.H., Ospina, Y., Cao, T., Guimaraes, E.P., Martinez, C.P., Tohme, J., Courtois, B., Ahmadi, N.: Population improvement through recurrent selection in rice. Prospects for maker assisted recurrent selection and genome-wide selection. — In: Plant and Animal Genome. XX Conference. Pp. W011. San Diego 2012.

  • Guo, P., Baum, M., Varshney, R., Graner, A., Grando, S., Ceccarelli, S.: QTLs for chlorophyll and chlorophyll fluorescence parameters in barley under post-flowering drought. — Euphytica 163: 203–214, 2008.

    CAS  Google Scholar 

  • Guttikonda, S.K., Valliyodan, B., Neelakandan, A.K., Tran, L.S., Kumar, R., Quach, T.N., Voothuluru, P., Gutierrez-Gonzalez, J.J., Aldrich, D.L., Pallardy, S.G., Sharp, R.E., Ho, T.H., Nguyen, H.T.: Overexpression of AtDREB1D transcription factor improves drought tolerance in soybean. — Mol. Biol. Rep. 41: 7995–8008, 2014.

    CAS  PubMed  Google Scholar 

  • Hao, Z., Li, X., Liu, X., Xie, C., Li, M., Zhang, D., Zhang, S.: Meta-analysis of constitutive and adaptive QTL for drought tolerance in maize. — Euphytica 174: 165–177, 2010.

    Google Scholar 

  • Harb, A., Krishnan, A., Ambavaram, M.M.R., Pereira, A.: Molecular and physiological analysis of drought stress in Arabidopsis reveals early responses leading to acclimation in plant growth. — Plant Physiol. 154: 1254–1271, 2010.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hash, C.T., Bhasker, R.A.G., Lindup, S., Sharma, A., Beniwal, C.R., Folkertsma, R.T., Mahalakshmi, V., Zerbini, E., Blümmel, M.: Opportunities for marker-assisted selection (MAS) to improve the feed quality of crop residues in pearl millet and sorghum. — Field Crops Res. 84: 79–88, 2003.

    Google Scholar 

  • Heffner, E.L., Sorrells, M.E., Jannink, J.L.: Genomic selection for crop improvement. — Crop Sci. 49: 1–12, 2009.

    CAS  Google Scholar 

  • Heslot, N., Jannink, J.L., Sorrells, M.E.: Perspectives for genomic selection applications and research in plants. — Crop Sci. 55: 1–12, 2015.

    Google Scholar 

  • Hill, C.B., Taylor, J.D., Edwards, J., Mather, D., Bacic, A., Langridge, P., Roessner, U.: Whole-genome mapping of agronomic and metabolic traits to identify novel quantitative trait loci in bread wheat grown in a water-limited environment. — Plant Physiol. 162: 1266–1281, 2013.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hochberg, U., Degu, A., Toubiana, D., Gendler, T., Nikoloski, Z., Rachmilevitch, S., Fait, A.: Metabolite profiling and network analysis reveal coordinated changes in grapevine water stress response. — BMC Plant Biol. 13: 184, 2013.

    PubMed Central  PubMed  Google Scholar 

  • Holland, J.B.: Implementation of molecular markers for quantitative traits in breeding programs — challenges and opportunities. New directions for a diverse planet. — In: Proceedings of the 4th International Crop Science Congress. Regional Institute, Gosford 2004 (www.cropscience.org.au/icsc2004).

  • Honsdorf, N., March, T.J., Berger, B., Tester, M., Pillen, K.: High-throughput phenotyping to detect drought tolerance QTL in wild barley introgression lines. — PLoS One 9: e97047, 2014.

    PubMed Central  PubMed  Google Scholar 

  • Hospital, F.: Selection in backcross programmes. — Phil. trans. roy. Soc. Lond. B: Biol. Sci. 360: 1503–1511, 2005.

    CAS  Google Scholar 

  • Hospital, F., Charcosset, A.: Marker-assisted introgression of quantitative trait loci. — Genetics 147: 1469–1485, 1997.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hossain, Z., Komatsu, S.: Potentiality of soybean proteomics in untying the mechanism of flood and drought stress tolerance. — Proteomes 2: 107–127, 2014.

    CAS  Google Scholar 

  • Huang, X., Han, B.: Natural variations and genome-wide association studies in crop plants. — Annu. Rev. Plant Biol. 65: 531–551, 2014.

    CAS  PubMed  Google Scholar 

  • Ibrahim, S.E., Schubert, A., Pillen, K., Léon, J.: Comparison of QTLs for drought tolerance traits between two advanced backcross populations of spring wheat. — Int. J. agr. Sci. 2: 216–227, 2012.

    Google Scholar 

  • Ikeda, T., Ohnishi, S., Senda, M., Miyoshi, T., Ishimoto, M., Kitamura, K., Funatsuki, H.: A novel major quantitative trait locus controlling seed development at low temperature in soybean (Glycine max). — Theor. appl. Genet. 118: 1477–1488, 2009.

    PubMed  Google Scholar 

  • Ingvarsson, P.K., Street, N.R.: Association genetics of complex traits in plants. — New Phytol. 189: 909–922, 2011.

    PubMed  Google Scholar 

  • Jaganathan, D., Thudi, M., Kale, S., Azam, S., Roorkiwal, M., Gaur, P.M., Kishor, P.B., Nguyen, H., Sutton, T., Varshney, R.K.: Genotyping-by-sequencing based intra-specific genetic map refines a “QTL-hotspot” region for drought tolerance in chickpea. — Mol. Genet. Genomics 290: 559–571, 2015.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Janska, A., Marsi, K.P., Zelenkova, S., Ovesna, J.: Cold stress and acclimation - what is important for metabolic adjustment? — Plant Biol. 12: 395–405, 2010.

    CAS  PubMed  Google Scholar 

  • Jha, U.C., Chaturvedi, S.K., Bohra, A., Basu, P.S., Khan, M.S., Barh, D.: Abiotic stresses, constraints and improvement strategies in chickpea. — Plant Breed. 133: 163–178, 2014.

    Google Scholar 

  • Ji, S.L., Jiang, L., Wang, Y.H., Zhang, W.W., Liu, X.L., Liu, S.J., Liu, S.J., Chen, L.M., Zhai, H.Q., Wan, J.M.: Quantitative trait loci mapping and stability for low temperature germination ability of rice. — Plant Breed. 128: 387–392, 2009.

    Google Scholar 

  • Jiang, S.S., Liang, X.N., Li, X., Wang, S.L., Lv, D.W., Ma, C.Y., Li, X.H., Ma, W.J., Yan, Y.M.: Wheat droughtresponsive grain proteome analysis by linear and nonlinear 2-DE and MALDI-TOF mass spectrometry. — Int. J. mol. Sci. 13: 16065–16083, 2012.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jonas, E., Koning, D.J.: Does genomic selection have a future in plant breeding? — Trends Biotechnol. 31: 497–504, 2013.

    CAS  PubMed  Google Scholar 

  • Jones, H.G.: Use of thermography for quantitative studies of spatial and temporal variation of stomatal conductance over leaf surfaces. — Plant Cell Environ. 22: 1043–1055, 1999.

    Google Scholar 

  • Jones, H.G.: Monitoring plant and soil water status: established and novel methods revisited and their relevance to studies of drought tolerance. — J. exp. Bot. 58: 119–130, 2007.

    CAS  PubMed  Google Scholar 

  • Jorrín, J.V., Maldonado A.M., Castillejo, M.A.: Plant proteome analysis: A 2006 update. — Proteomics 7: 2947–2962, 2007.

    PubMed  Google Scholar 

  • Kadam, S., Singh, K., Shukla, S., Goel, S., Vikram, P., Pawar, V., Gaikwad, K., Chopra, R.K., Singh, N.K.: Genomic associations for drought tolerance on the short arm of wheat chromosome 4B. — Funct. Integr. Genomics 12: 447–464, 2012.

    CAS  PubMed  Google Scholar 

  • Kakumanu, A., Ambavaram, M.M., Klumas, C., Krishnan, A., Batlang, U., Myers, E., Grene, R., Pereira, A.: Effects of drought on gene expression in maize reproductive and leaf meristem tissue revealed by RNA-seq. — Plant Physiol. 160: 846–867, 2012.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kathiresana, A., Lafittea, H.R., Chena, J., Mansuetoa, L., Bruskiewicha, B.J.: Gene expression microarrays and their application in drought stress research. — Field Crops Res. 97: 101–110, 2006.

    Google Scholar 

  • Kearsey, M.J., Farquhar, A.G.L.: QTL analysis in plants: where are we now? — Heredity 80: 137–142, 1998.

    PubMed  Google Scholar 

  • Khattab, H.I., Eman, M.A., Eman, M.M., Helal, N.M., Mohamed, M.R.: Effect of selenium and silicon on transcription factors NAC5 and DREB2A involved in drought-responsive gene expression in rice. — Biol. Plant. 58: 265–273, 2014.

    CAS  Google Scholar 

  • Khazaei, H., O’sullivan, D.M., Sillanpää, M.J., Stoddard, F.L.: Use of synteny to identify candidate genes underlying QTL controlling stomatal traits in faba bean (Vicia faba L.). — Theor. appl. Genet. 127: 2371–2385, 2014.

    PubMed  Google Scholar 

  • Khazaei, H., Street, K., Bari, A., Mackay, M., Stoddard, F.L.: The FIGS (Focused Identification of Germplasm Strategy) approach identifies traits related to drought adaptation in Vicia faba genetic resources. — PLoS One 8: e63107, 2013.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kholová, J., Hash, T., Kočová, M., Vadez, V.: Does a terminal drought tolerance QTL contribute to differences in ROS scavenging enzymes and photosynthetic pigments in pearl millet exposed to drought? — Environ. exp. Bot. 71: 99–106, 2011.

    Google Scholar 

  • Knight, H., Knight, M.R.: Abiotic stress signalling pathways: specificity and cross-talk. — Trends Plant Sci. 6: 262–267, 2001.

    CAS  PubMed  Google Scholar 

  • Koller, A., Washburn, M.P., Lange, B.M., Andon, N.L., Deciu, C., Haynes, P.A., Hays, L., Schieltz, D., Ulaszek, R., Wei, J., Wolters, D., Yates, J.R.: Proteomic survey of metabolic pathways in rice. — Proc. nat. Acad. Sci. USA 99: 11969–11974, 2002.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Komatsu, S., Mock, H.P., Yang, P., Svensson, B.: Application of proteomics for improving crop protection/artificial regulation. — Front. Plant Sci. 4: 522, 2013.

    PubMed Central  PubMed  Google Scholar 

  • Kosová, K., Vítámvás, P., Prášil, I.T.: Proteomics of stress responses in wheat and barley - earch for potential protein markers of stress tolerance. — Front. Plant Sci. 5: 711. 2014a.

    PubMed Central  PubMed  Google Scholar 

  • Kosová, K., Vítámvás, P., Prášil, I.T.: Wheat and barley dehydrins under cold, drought, and salinity - what can LEA-II proteins tell us about plant stress response? — Front. Plant Sci. 5: 343, 2014b.

    PubMed Central  PubMed  Google Scholar 

  • Lakshmanan, M., Zhang, Z., Mohanty, B., Kwon, J.Y., Choi, H.Y., Nam, H.J., Kim, D.L., Lee, D.Y.: Elucidating rice cell metabolism under flooding and drought stresses using fluxbased modeling and analysis. — Plant Physiol. 162: 2140–2150, 2013.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Landi, P., Sanguineti, M.C., Salvi, S., Giuliani, S., Bellotti, M., Maccaferri, M., Conti, S., Tuberosa, R.: Validation and characterization of a major QTL affecting leaf ABA concentration in maize. — Mol. Breed. 15: 291–303, 2005.

    CAS  Google Scholar 

  • Lawlor, D.W., Cornic, G.: Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. — Plant Cell Environ. 25: 275–294, 2002.

    CAS  PubMed  Google Scholar 

  • Lazacano-Ferrat, I., Lovat, C.J.: Relationship between relative water content, nitrogen pools, and growth of Phaseolus vulgaris L. and P. acutifoolius A. Gray during water deficit. — Crop Sci. 39: 467–475, 1999.

    Google Scholar 

  • Li, X., Han, Y., Teng, W., Zhang, S., Yu, K., Poysa, V., Anderson, T., Ding, J., Li, W.: Pyramided QTL underlying tolerance to Phytophthora root rot in mega-environment from soybean cultivar ‘Conrad’ and ‘Hefeng 25’. — Theor. appl. Genet. 121: 651–658, 2010.

    PubMed  Google Scholar 

  • Lisec, J., Römisch-Margl, L., Nikoloski, Z., Piepho, H.P., Giavalisco, P., Selbig, J., Gierl, A., Willmitzer, L.: Corn hybrids display lower metabolite variability and complex metabolite inheritance patterns. — Plant J. 68: 326–336, 2011.

    CAS  PubMed  Google Scholar 

  • Mackay, I., Powell, W.: Methods for linkage disequilibrium mapping in crops. — Trends Plant Sci. 12: 57–63, 2007.

    CAS  PubMed  Google Scholar 

  • Mackill, D.J., Nguyen, H.T., Zhan, J.: Use of molecular markers in plant improvement programs for rainfed lowland rice. — Field Crops Res. 64: 177–185, 1999.

    Google Scholar 

  • Mackill, D.J., Ni, J.: Molecular mapping and marker assisted selection for major-gene traits in rice. — In Khush, G.S., Brar, D.S., Hardy, B. (ed.): Rice Genetics. Vol. IV. Pp. 137–151. International Rice Research Institute, Los Baños 2001.

    Google Scholar 

  • Majewski, J., Pastinen, T.: The study of eQTL variations by RNA-seq: from SNPs to phenotypes. — Trends Genet. 27: 72–79, 2011.

    CAS  PubMed  Google Scholar 

  • Maksup, S., Roytraku, S., Supaibulwatana, K.: Proteome and transcriptional responses in three contrasting indica rice (Oryza sativa L. ssp. indica) under water stress. — In: CU-MUSC Graduate Forum in Plant Biotechnology 2012.

  • Malone, J.H., Oliver, B.: Microarrays, deep sequencing and the true measure of the transcriptome. — BMC Biol. 9: 34, 2011.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mano, Y., Takeda, K.: Mapping quantitative trait loci for salt tolerance at germination and the seedling stage in barley (Hordeum vulgare L). — Euphytica 94: 263–272, 1997.

    Google Scholar 

  • Mardani, Z., Rabiei, B., Sabouri, H., Sabouri, A.: Mapping of QTLs for germination characteristics under non-stress and drought stress in rice. — Rice Sci. 20: 391–399, 2013.

    Google Scholar 

  • McCouch, S.R., Doerge, R.W.: QTL mapping in rice. — Trends Genet. 11: 482–487, 1995.

    CAS  PubMed  Google Scholar 

  • Meuwissen, T.H.E., Hayes, B.J., Goddard, M.E.: Prediction of total genetic value using genome-wide dense marker maps. — Genetics 157: 1819–1829, 2001.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Minh-Thu, P.T., Hwang, D.J., Jeon, J.S., Nahm, B.H., Kim, Y.K.: Transcriptome analysis of leaf and root of rice seedling to acute dehydration. — Rice 6: 38, 2013.

    PubMed Central  PubMed  Google Scholar 

  • Mir, R.R., Zaman-Allah, M., Sreenivasulu, N., Trethowan, R., Varshney, R.K.: Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops. — Theor. appl. Genet. 125: 625–645, 2012.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mishra, A.K., Singh, V.P.: A review of drought concepts. — J. Hydrol. 391: 202–216, 2010.

    Google Scholar 

  • Mitchell-Olds, T.: Complex-trait analysis in plants. — Genome Biol. 11: 113, 2010.

    PubMed Central  PubMed  Google Scholar 

  • Mohan, M., Nair, S., Bhagwat, A., Krishna, T.G., Yano, M., Bhatia, C.R., Sasaki, T.: Genome mapping, molecular markers and marker-assisted selection in crop plants. — Mol. Breed. 3: 87–103, 1997.

    CAS  Google Scholar 

  • Mohler, V., Singrun, C.: General considerations: markerassisted selection. — In: Lörz, H., Wenzel, G. (ed.): Molecular Marker Systems in Plant Breeding and Crop Improvement (Biotechnology in Agriculture and Forestry. Vol. 55). Pp. 305–317. Springer-Verlag, Berlin - Heidelberg 2004.

    Google Scholar 

  • Muchero, W., Ehlers, J.D., Close, T.J., Roberts, P.A.: Mapping QTL for drought stress-induced premature senescence and maturity in cowpea [Vigna unguiculata (L.) Walp.]. — Theor. appl. Genet. 118: 849–863, 2009.

    CAS  PubMed  Google Scholar 

  • Nakaya, A., Isobe, S.N.: Will genomic selection be a practical method for plant breeding? — Ann. Bot. 110: 1303–1316, 2012.

    PubMed Central  PubMed  Google Scholar 

  • Neves-Borges, A.C., Guimarães-Dias, F., Cruz, F., Mesquita, R.O., Nepomuceno, A.L., Romano, E., Loureiro, M.E., Grossi-de-Sá, M.F., Ferreira, M.A.: Expression pattern of drought stress marker genes in soybean roots under two water deficit systems. — Genet. mol. Biol. 35: 212–221, 2012.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oh, S.J., Kim, Y.S., Kwon, C., Park, H.K., Jeong, J.S., Kim, J.K.: Overexpression of the transcription factor AP37 in rice improves grain yield under drought conditions. — Plant Physiol. 150: 1368–1379, 2009.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oh, S.J., Song, S.I., Kim, Y.S., Jang, H.J., Kim, S.Y., Kim, M., Kim, Y.K., Nahm, B.H., Kim, J.K.: Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. — Plant Physiol. 138: 341–351, 2005.

    CAS  PubMed Central  PubMed  Google Scholar 

  • O’Toole, J.C.: Molecular approaches for the genetic improvement of cereals for stable production in water limited environments. — In: Ribaut, J.M., Poland, D. (ed.): A Strategic Planning Workshop. CIMMYT, El Batan 1999.

    Google Scholar 

  • Padmalatha, K.V., Dhandapani, G., Kanakachari, M., Kumar, S., Dass, A., Patil, D.P., Rajamani, V., Kumar, K., Pathak, R., Rawat, B., Leelavathi, S., Reddy, P.S., Jain, N., Powar, K.N., Hiremath, V., Katageri, I.S., Reddy, M.K., Solanke, A.U., Reddy, V.S., Kumar P.A.: Genome-wide transcriptomic analysis of cotton under drought stress reveals significant down-regulation of genes and pathways involved in fibre elongation and up-regulation of defense responsive genes. — Plant mol. Biol. 78: 223–246, 2012.

    CAS  PubMed  Google Scholar 

  • Pantuwan, G., Fukai, S., Cooper, M., Rajatasereekul, S., O’Toole, J.C.: Yield response of rice (Oryza sativa L) genotypes to different types of drought under rainfed lowlands. Part1. Grain yield and yield components. — Field Crops Res. 73: 153–168, 2002.

    Google Scholar 

  • Pavli, O.I., Vlachos, C.E., Kalloniati, C., Flemetakis, E., Skaracis, G.N.: Metabolite profiling reveals the effect of drought on sorghum (Sorghum bicolor L. Moench) metabolism. — Plant Omics J. 6: 371–376, 2013.

    CAS  Google Scholar 

  • Postel, S.: Redesigning irrigated agriculture. — In: Brown, L.R., Flavin, C., French, H. (ed.): State of the World, 2000. Pp. 39–58. W.W. Norton and Co, New York 1999.

    Google Scholar 

  • Prudhomme, C., Giuntoli, I., Robinson, E.L., Clark, D.B., Arnell, N.W., Dankers, R., Fekete, B.M., Franssen, W., Gerten, D., Gosling, S.N., Hagemann, S., Hannah, D.M., Kim, H., Masaki, Y., Satoh, Y., Stacke, T., Wada, Y., Wisser, D.: Hydrological droughts in the 21st century: hotspots and uncertainties from a global multimodel ensemble experiment. — Proc. nat. Acad. Sci. USA 111: 3262–3267, 2014.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rafalski, J.A.: Association genetics in crop improvement. — Curr. Opin. Plant Biol. 13: 174–180, 2010.

    CAS  PubMed  Google Scholar 

  • Ramu, P., Kassahun, B., Senthilvel, S., Ashok Kumar, C., Jayashree, B., Folkertsma, R.T., Ananda Reddy L., Kuruvinashetti, M.S., Haussmann, B.I.G., Hash, C.T.: Exploiting rice-sorghum synteny for targeted development of EST-SSRs to enrich the sorghum genetic linkage map. — Theor. appl. Genet. 119: 1193–1204, 2009.

    CAS  PubMed  Google Scholar 

  • Ravi, K., Vadez, V., Isobe, S., Mir, R.R., Guo, Y., Nigam, S.N., Gowda, M.V.C., Radhakrishnan, T., Bertioli, D.J., Knapp, S.J., Varshney, R.K.: Identification of several small maineffect QTLs and a large number of epistatic QTLs for drought tolerance in groundnut (Arachis hypogaea L.). — Theor. appl. Genet. 122: 1119–1132, 2011.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reddy, S.K., Liua, S., Rudda, J.C., Xuea, Q., Paytonb, P., Finlaysonc, S.A., Mahanb, J., Akhunovad, A., Holaluc, S.V., Lue, N.: Physiology and transcriptomics of waterdeficit stress responses in wheat cultivars TAM 111 and TAM 112. — J. Plant Physiol. 171: 1289–1298, 2014.

    CAS  PubMed  Google Scholar 

  • Rehman, A., Malhotra, R., Bett, K., Tar’an, B., Bueckert, R., Warkentin, T.: Mapping QTL associated with traits affecting grain yield in chickpea (Cicer arietinum L.) under terminal drought stress. — Crop Sci. 51: 450–463, 2011.

    Google Scholar 

  • Ribaut, J.M., Ragot, M.: Marker-assisted selection to improve drought adaptation in maize: the backcross approach, perspectives, limitations, and alternatives. — J. exp. Bot. 58: 351–360, 2007.

    CAS  PubMed  Google Scholar 

  • Richardson, K.L., Vales, M.I., Kling, J.G., Mundt, C.C., Hayes, P.M.: Pyramiding and dissecting disease resistance QTL to barley stripe rust. — Theor. appl. Genet. 113: 485–495, 2006.

    CAS  PubMed  Google Scholar 

  • Rollins, J.A., Habte, E., Templer, S.E., Colby, T., Schmidt, J., Von Korff, M.: Leaf proteome alterations in the context of physiological and morphological responses to drought and heat stress in barley (Hordeum vulgare L.). — J. exp. Bot. 64: 3201–3212, 2013.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sakhi, S., Shehzad, T., Rehman, S., Okuno, K.: Mapping the QTLs underlying drought stress at developmental stage of sorghum (Sorghum bicolor (L.) Moench) by association analysis. — Euphytica 193: 433–450, 2013.

    Google Scholar 

  • Salekdeh, G.H., Siopongco, J., Wade, L.J., Ghareyazie, B., Bennett, J.: A proteomic approach to analysing drought- and salt-responsiveness in rice. — Field Crops Res. 76: 199–219, 2002.

    Google Scholar 

  • Sanchez, D.H., Schwabe, F., Erban, A., Udvardi, M.K., Kopka, J.: Comparative metabolomics of drought acclimation in model and forage legumes. — Plant Cell Environ. 35: 136–149, 2012.

    CAS  PubMed  Google Scholar 

  • Sasaki, K., Kazama, Y., Chae, Y., Sato, T.: Confirmation of novel quantitative trait loci for seed dormancy at different ripening stages in rice. — Rice Sci. 20: 207–212, 2013.

    Google Scholar 

  • Seiler, C., Harshavardhan, V.T., Rajesh, K., Reddy, P.S., Strickert, M., Rolletschek, H., Scholz, U., Wobus, U., Sreenivasulu, N.: ABA biosynthesis and degradation contributing to ABA homeostasis during barley seed development under control and terminal drought-stress conditions. — J. exp. Bot. 62: 2615–2632, 2011.

    CAS  PubMed  Google Scholar 

  • Semagn, K., Beyene, Y., Babu, R., Nair, S., Gowda, M., Das, B., Tarekegne, A., Mugo, S., Mahuku, G., Worku, M., Warburton, M.L., Olsen, M., Prasanna, B.M.: QTL mapping and molecular breeding for developing stress resilient maize for sub-Saharan Africa. — Crop Sci. 5: 1–11, 2015.

    Google Scholar 

  • Semagn, K., Beyene, Y., Warburton, M., Tarekegne, A., Mugo, S., Meisel, B., Sehabiague, P. Prasanna, B.M.: Metaanalyses of QTL for grain yield and anthesis silking interval in 18 maize populations evaluated under water-stressed and well-watered environments. — BMC Genomics 14: 313, 2013.

    PubMed Central  PubMed  Google Scholar 

  • Serraj, R., Hash, C.T., Rizvi, S.M., Sharma, A., Yadav, R.S., Bidinger, F.R.: Recent advances in marker-assisted selection for drought tolerance in pearl millet. — Plant Prod. Sci. 8: 334–337, 2005.

    Google Scholar 

  • Shao, H., Chu, L., Shao, M., Jaleel, C.A., Hong-mei, M.: Higher plant antioxidants and redox signaling under environmental stresses. — C.R. Biol. 331: 433–441, 2008.

    CAS  PubMed  Google Scholar 

  • Shen, L., Courtois, B., McNally, K.L., Robin, S., Li, Z.: Evaluation of near-isogenic lines of rice introgressed with QTLs for root depth through marker-aided selection. — Theor. appl. Genet. 103: 427–437, 2001.

    Google Scholar 

  • Shiriga, K., Sharma, R., Kumar, K., Yadav, S.K., Hossain, F., Thirunavukkarasu, N.: Genome-wide identification and expression pattern of drought-responsive members of the NAC family in maize. — Meta Gene 2: 407–417, 2014.

    PubMed Central  PubMed  Google Scholar 

  • Shu, Y.J., Yu, D.S., Wang, D., Bai, X., Zhu, Y.M., Guo, C.H.: Genomic selection of seed weight based on low-density SCAR markers in soybean. — Genet. mol. Res. 12: 2178–2188, 2013.

    CAS  PubMed  Google Scholar 

  • Silvente, S., Sobolev, A.P., Lara, M.: Metabolite adjustments in drought tolerant and sensitive soybean genotypes in response to water stress. — PLoS One 7: e38554, 2012.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Siopongco, J.D.L.C., Yamauchi, A., Salekdeh, H., Bennett, J., Wade, L. J.: Growth and water use response of doubled haploid rice lines to drought and rewatering during the vegetative stage. — Plant Prod. Sci. 9: 141–151, 2006.

    Google Scholar 

  • Song, Z.-Z., Yang, S.-Y., Zuo, J., Su, Y.-H.: Over-expression of ApKUP3 enhances potassium nutrition and drought tolerance in transgenic rice. — Biol. Plant. 58: 649–658, 2014.

    CAS  Google Scholar 

  • Srividhya, A., Vemireddy, L.R., Sridhar, S., Jayaprada, M., Ramanarao, P.V., Hariprasad, A.S., Reddy, H.K., Anuradha, G., Siddiq, E.: Molecular mapping of QTLs for yield and its components under two water supply conditions in rice (Oryza sativa L.). — J. Crop Sci. Biotechnol. 14: 45–56, 2011.

    Google Scholar 

  • Steele, K.A., Price, A.H., Shashidhar, H.E., Witcombe, R.: Marker-assisted selection to introgress rice QTLs controlling root traits into an Indian upland rice variety. — Theor. appl. Genet. 112: 208–215, 2006.

    CAS  PubMed  Google Scholar 

  • Swamy, B.P.M., Vikram, P., Dixit, S., Ahmed, H., Kumar, A.: Meta-analysis of grain yield QTL identified during agricultural drought in grasses showed consensus. — BMC Genomics 12: 319, 2011.

    PubMed Central  PubMed  Google Scholar 

  • Tai, F.J., Yuan, Z.L., Wu, X.L., Zhao, P.F., Hu, X.L., Wang, W.: Identification of membrane proteins in maize leaves, altered in expression under drought stress through polyethylene glycol treatment. — Plant Omics J. 4: 250–256, 2011.

    CAS  Google Scholar 

  • Tanksley, S.D.: Molecular markers in plant breeding. — Plant mol. Biol. Rep. 1: 1–3, 1983.

    Google Scholar 

  • Taramino, G., Tarchini, R., Ferrario, S., Lee, M., Pe’, M.E.: Characterization and mapping of simple sequence repeats (SSRs) in Sorghum bicolour. — Theor. Appl. Genet. 95: 66–72, 1997.

    CAS  Google Scholar 

  • Teng, S.H., Zeng, D.L., Qian, Q., Kunihifo, Y., Huang, D.N., Zhu, L.H.: QTL analysis of rice low temperature germinability. — Chin. Sci. Bull. 46: 1081–1083, 2001.

    Google Scholar 

  • Thudi, M., Gaur, P.M., Krishnamurthy, L., Mir, R.R., Kudapa, H., Fikre, A., Kimurto, P., Tripathi, S., Soren, K.R., Mulwa, R., Bharadwaj, C., Datta, S., Chaturvedi, S.K., Varshney, R.K.: Genomics-assisted breeding for drought tolerance in chickpea. — Funct. Plant Biol. 41: 1178–1190, 2013.

    Google Scholar 

  • Thudi, M., Upadhyaya, H.D., Rathore, A., Gaur, P.M., Krishnamurthy, L., Roorkiwal, M., Nayak, S.N., Chaturvedi, S.K., Basu, P.S., Gangarao, N.V., Fikre, A., Kimurto, P., Sharma, P.C., Sheshashayee, M.S., Tobita, S., Kashiwagi, J., Ito, O., Killian, A., Varshney, R.K.: Genetic dissection of drought and heat tolerance in chickpea through genome-wide and candidate gene-based association mapping approaches. — PLoS One 9: e96758, 2014.

    PubMed Central  PubMed  Google Scholar 

  • Toenniessen, G.H., O’Toole, J.C., De, V.J.: Advances in plant biotechnology and its adoption in developing countries. — Curr. Opin. Plant Biol. 6: 191–198, 2003.

    PubMed  Google Scholar 

  • Townley-Smith, T.F., Hurd, E.A.: Testing and selecting for drought resistance in wheat. — In: Mussell, H., Staples, R.C. (ed.): Stress Physiology in Crop Plants. Pp. 447–464. John Wiley and Sons, New York 1979.

    Google Scholar 

  • Tyagi, S., Raghvendra, Singh U., Kalra, T., Munja, K.: Applications of metabolomics - a systematic study of the unique chemical fingerprints: an overview. — Int. J. Pharm. Sci. Rev. Res. 3: 83–86, 2010.

    CAS  Google Scholar 

  • Uga, Y., Okuno, K., Yano, M.: Dro1, a major QTL involved in deep rooting of rice under upland field conditions. — J. exp. Bot. 62: 2485–2494, 2011.

    CAS  PubMed  Google Scholar 

  • Uga Y., Yamamoto, E., Kanno, N., Kawai, S., Mizubayashi, T., Fukuoka, S.: A major QTL controlling deep rooting on rice chromosome 4. — Sci. Rep. 3: 3040, 2013.

    PubMed Central  PubMed  Google Scholar 

  • Varshney, R.K., Gaur, P.M., Chamarthi, S.K., Krishnamurthy, L., Tripathi, S., Kashiwagi, J., Samineni, S., Singh, V.K., Thudi, M., Jaganathan, D.: Fast-track introgression of “QTL-hotspot” for root traits and other drought tolerance traits in JG 11, an elite and leading variety of chickpea. — Plant Genome 6: 3, 2013a.

    Google Scholar 

  • Varshney, R.K., Hiremath, P.J., Lekha, P., Kashiwagi, J., Balaji, J., Deokar, A.A., Vadez, V., Xiao, Y., Srinivasan, R., Gaur, P.M., Siddique, K.H.M., Town, C.D., Hoisington, D.A.: A comprehensive resource of drought- and salinity-responsive ESTs for gene discovery and marker development in chickpea (Cicer arietinum L.). — BMC Genomics 10: 523, 2009.

    PubMed Central  PubMed  Google Scholar 

  • Varshney, R.K., Murali Mohan, S., Gaur, P.M. Gangarao, N.V., Pandey, M.K., Bohra, A., Sawargaonkar, S.L., Chitikineni, A., Kimurto, P.K., Janila, P., Saxena, K.B., Fikre, A., Sharma, M., Rathore, A., Pratap, A., Tripathi, S., Datta, S., Chaturvedi, S.K., Mallikarjuna, N., Anuradha, G., Babbar, A., Choudhary, A.K., Mhase, M.B., Bharadwaj, Ch., Mannur, D.M., Harer, P.N., Guo, B., Liang, X., Nadarajan, N., Gowda, C.L.: Achievements and prospects of genomicsassisted breeding in three legume crops of the semi-arid tropics. — Biotechnol. Adv. 31: 1120–1134, 2013b.

    PubMed  Google Scholar 

  • Varshney, R.K., Paulo, M.J., Grando, S., Van Eeuwijk, F.A., Keizer, L.C.P., Guo, P., Ceccarelli, S., Kilian, A., Baum, M., Graner, A.: Genome wide association analyses for drought tolerance related traits in barley (Hordeum vulgare L.). — Field Crops Res. 126: 171–180, 2012.

    Google Scholar 

  • Varshney, R.K., Sigmund, R., Börner, A., Korzun, V., Stein, N., Sorrells, M.E., Langridge, P., Graner, A.: Interspecific transferability and comparative mapping of barley EST-SSR markers in wheat, rye and rice. — Plant Sci. 168: 195–202, 2005.

    CAS  Google Scholar 

  • Varshney, R.K., Thudi, M., Nayak, S.N., Gaur, P.M., Kashiwagi, J., Krishnamurthy, L., Jaganathan, D., Koppolu, J., Bohra, A., Tripathi, S., Rathore, A., Jukanti, A.K., Jayalakshmi, V., Vemula, A., Singh, S.J., Yasin, M., Sheshshayee, M.S., Viswanatha, K.P.: Genetic dissection of drought tolerance in chickpea (Cicer arietinum L.). — Theor. appl. Genet. 127: 445–462, 2014.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vikram, P., Mallikarjuna Swamy, B.P., Dixit, S., Helal, U.A., Cruz, M.T.S., Singh, A.K., Kumar, A.: qDTY1.1, a major QTL for rice grain yield under reproductive-stage drought stress with a consistent effect in multiple elite genetic backgrounds. — BMC Genetics 12: 89, 2011.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang, P., Xing, Y., Li, Z., Yu, S.: Improving rice yield and quality by QTL pyramiding. — Mol. Breed. 29: 903–913, 2012.

    CAS  Google Scholar 

  • Wang, Y., Zhang, Q., Zheng, T., Cui, Y., Zhang, W., Xu, J., Li, Z.: Drought-tolerance QTLs commonly detected in two sets of reciprocal introgression lines in rice. — Crop Pasture Sci. 65: 171–184, 2014.

    Google Scholar 

  • Wang, Z.F., Wang, J.F., Bao, Y.M., Wu, Y.Y., Zhang, H.S.: Quantitative trait loci controlling rice seed germination under salt stress. — Euphytica 178: 297–307, 2011.

    Google Scholar 

  • Welcker, C., Boussuge, B., Bencivenni, C., Ribaut, J.M., Tardieu, F.: Are source and sink strengths genetically linked in maize plants subjected to water deficit? A QTL study of the responses of leaf growth and of anthesis-silking interval to water deficit. — J. exp. Bot. 58: 339–349, 2007.

    CAS  PubMed  Google Scholar 

  • Wen, W., Li, D., Li, X., Gao, Y., Li, W., Li, H., Liu, J., Liu, H., Chen, W., Luo, J., Yan, J.: Metabolome-based genomewide association study of maize kernel leads to novel biochemical insights. — Nat. Commun. 5: 3438, 2014.

    PubMed Central  PubMed  Google Scholar 

  • Wentzell, A.M., Rowe, H.C., Hansen, B.G., Ticconi, C., Halkier, B.A., Kliebenstein, D.J.: Linking metabolic QTLs with network and cis eQTLs controlling biosynthetic pathways. — PLoS Genet. 3: e162, 2007.

    PubMed Central  Google Scholar 

  • Wójcik-Jagla, M., Rapacz, M., Tyrka, M., Kościelniak, J., Crissy, K., Żmuda, K.: Comparative QTL analysis of early short-time drought tolerance on Polish fodder and malting spring barleys. — Theor. appl. Genet. 126: 3021–3034, 2013.

    PubMed Central  PubMed  Google Scholar 

  • Wu, J., Wang, L., Li, L., Wang, S.: De novo assembly of the common bean transcriptome using short reads for the discovery of drought-responsive genes. — PLoS One 9: e109262, 2014.

    PubMed Central  PubMed  Google Scholar 

  • Xiong, J.H., Fu, B.Y., Xu, H.X., Li, Y.S.: Proteomic analysis of PEG-simulated drought stress responsive proteins of rice leaves using a pyramiding rice line at the seedling stage. — Bot. Stud. 51: 137–145, 2010.

    CAS  Google Scholar 

  • Xiong, L., Wang, R.G., Mao, G., Koczan, J.M.: Identification of drought tolerance determinants by genetic analysis of root response to drought stress and abscisic acid. — Plant Physiol. 142: 1065–1074, 2006.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xu, J., Yuan, Y., Xu, Y., Zhang, G., Guo, X., Wu, F., Wang, Q., Rong, T., Pan, G., Cao, M., Tang, Q., Gao, S., Liu, Y., Wang, J., Lan, H., Lu, Y.: Identification of candidate genes for drought tolerance by whole-genome resequencing in maize. — BMC Plant Biol. 14: 83, 2014.

    PubMed Central  PubMed  Google Scholar 

  • Xu. Y., Crouch, J.H.: Marker-Assisted Selection in Plant Breeding: From Publications to Practice. — Crop Sci. 48: 391–407, 2008.

    Google Scholar 

  • Yang, W., Wang, M., Yue, A., Wu, J., Li, S., Li, G., Du, W.: QTLs and epistasis for drought-tolerant physiological index in soybean (Glycine max L.) across different environments. — Caryologia 67: 72–78, 2014.

    Google Scholar 

  • Ye, J., Wang, S., Zhang, F., Xie, D., Yao, Y.: Proteomic analysis of leaves of different wheat genotypes subjected to PEG 6000 stress and rewatering. — Plant Omics J. 6: 286–294, 2013.

    CAS  Google Scholar 

  • Yonemaru, J., Ando, T., Mizubayashi, T., Kasuga, S., Matsumoto, T., Yano, M.: Development of genome-wide simple sequence repeat markers using whole-genome shotgun sequences of Ssrghum (Sorghum bicolor (L.) Moench). — DNA Res. 16: 187–193, 2009.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Young, N.D., Tanksley, S.D.: Restriction fragment length polymorphism maps and the concept of graphical genotypes. — Theor. appl. Genet. 77: 95–101, 1989.

    CAS  PubMed  Google Scholar 

  • Yu, J.M., Buckler, E.S.: Genetic association mapping and genome organization of maize. — Curr. Opin. Biotechnol. 17: 155–160, 2006.

    CAS  PubMed  Google Scholar 

  • Zargar, S.M., Nazir, M., Cho, K., Kim, D.W., Jones, O.A.H., Sarkar, A., Agrawal, S.B., Shibato, J., Kubo, A., Jwa, N.S., Agrawal, G.K., Rakwal, R.: Impact of climatic changes on crop agriculture: OMICS for sustainability and next generation crops. — In: Noureddine, B. (ed): Sustainable Agriculture and New Bio-Technologies. Pp. 453–477. Taylor and Francis, CRC Press, London 2010.

    Google Scholar 

  • Zhang, X., Pérez-Rodríguez, P., Semagn, K., Beyene, Y., Babu, R., López-Cruz, M.A., San Vicente, F., Olsen, M., Buckler, E., Jannink, J.L., Prasanna, B.M., Crossa, J.: Genomic prediction in biparental tropical maize populations in waterstressed and well-watered environments using low-density and GBS SNPs. — Heredity 114: 291–299, 2015.

    CAS  PubMed  Google Scholar 

  • Zhao, Y., Gowda, M., Lium, W., Würschum, T., Maurer, H.P., Longin, F.H., Ranc, N., Reif, J.C. Accuracy of genomic selection in European maize elite breeding populations. — Theor. appl. Genet. 124: 769–776, 2012.

    PubMed  Google Scholar 

  • Ziyomo, C., Bernardo, R.: Drought tolerance in maize: indirect selection through secondary traits versus genome wide selection. — Crop Sci. 53: 1269–1275, 2012.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B. Singh or A. Bohra.

Additional information

Acknowledgment: AB acknowledges support from the Indian Council of Agricultural Research (ICAR), New Delhi, India. The first two authors contributed equally to this paper.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, B., Bohra, A., Mishra, S. et al. Embracing new-generation ‘omics’ tools to improve drought tolerance in cereal and food-legume crops. Biol Plant 59, 413–428 (2015). https://doi.org/10.1007/s10535-015-0515-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-015-0515-0

Additional key words

Navigation