Skip to main content
Log in

ICE genes in Arabidopsis thaliana: clinal variation in DNA polymorphism and sequence diversification

  • Original Papers
  • Published:
Biologia Plantarum

Abstract

Natural accessions of Arabidopsis thaliana exhibit a clinal variation in freezing tolerance following temperature changes across the natural habitat. Here we performed molecular evolution and population genetic analyses of homologous INDUCER OF CBF EXPRESSION1 (ICE1) and ICE2 genes, the master regulators of plant cold response. A study of ICE genes polymorphism was performed using 60 A. thaliana ecotypes grouped according to their geographic origin. The genetic diversity of ICE2 was characterized by a high number of haplotypes and an overall high diversity. The levels of nonsynonymous nucleotide polymorphism increased from a northern group southward. On the contrary, the ICE1 gene sequence was less diverse and there was no clinal variation in the sequence polymorphism. Thus, different selection forces acting on the ICE2 gene might be one of the reasons of clinal variation in freezing tolerance. This clinal variation also indicates that ICE2 is more important for a cold response than ICE1. The study of the ratio of numbers of nonsynonymous to synonymous substitutions (Ka/Ks) between A. thaliana paralogs shows that the sequence diversification and emergence of two new ICE2-specific motifs could contribute to the functional diversification of the duplicates. The Ka/Ks for ICE2 of A. thaliana and A. lyrata orthologs was an order of magnitude greater than that for the ICE1 orthologs, which suggests that the protein sequence of ICE2, an early duplicate, evolved under a weaker selective constraint. A relaxed selection on ICE2 in southern populations and more stringent in northern populations also confirmed its role in a cold resistance. The selection pressure on ICE1 might be caused by its role in the control of more essential than cold response functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

bHLH:

basic helix-loop-helix

ICE1:

INDUCER OF CBF EXPRESSION1

ICE2:

INDUCER OF CBF EXPRESSION2

InDel:

insertion or deletion

Ka :

number of nonsynonymous substitutions per non-synonymous site

Ks :

number of synonymous substitutions per synonymous site

MYA:

million years ago

NLS:

nuclear localization signal

PEST:

proline (P), glutamic acid (E), serine (S), and threonine (T)-rich sequence

ZIP:

leucine zipper domain

References

  • Aguadé, M.: Nucleotide sequence variation at two genes of the phenylpropanoid pathway, the FAH1 and F3H genes, in Arabidopsis thaliana. — Mol. Biol. Evol. 18: 1–9, 2001.

    Article  PubMed  Google Scholar 

  • Al-Shehbaz, I.A., O'Kane, S.L.: Taxonomy and phylogeny of Arabidopsis (Brassicaceae). — In: Somerville, C.R., Meyerowitz, E.M. (ed.): The Arabidopsis Book [Internet; doi: 10.1199/tab.0001]. Amer. Soc. Plant Biol., Rockville 2002.

    Google Scholar 

  • Achard, P., Gong, F., Cheminant, S., Alioua, M., Hedden, P., Genschik, P.: The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growthrepressing DELLA proteins via its effect on gibberellin metabolism. — Plant Cell. 20: 2117–2129, 2008.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ba, A.N.N., Pogoutse, A., Provart, N., Moses, A.M.: NLStradamus: a simple hidden Markov model for nuclear localization signal prediction. — BMC Bioinformatics 10: 202, 2009.

    Article  Google Scholar 

  • Beck, J.B., Schmuths, H., Schaal, B.A.: Native range genetic variation in Arabidopsis thaliana is strongly geographically structured and reflects Pleistocene glacial dynamics. — Mol. Ecol. 17: 902–915, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Blanc, G., Hokamp, K., Wolfe, K.H.: A recent polyploidy superimposed on older large-scale duplications in the Arabidopsis genome. — Genome Res. 13: 137–144, 2003.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bowers, J. E., Chapman, B. A., Rong, J., Paterson, A. H.: Unraveling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. — Nature 422: 433–438, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Chinnusamy, V., Ohta, M., Kanrar, S., Lee, B.H., Hong, X., Agarwal, M., Zhu, J.K.: ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. — Genes Dev. 17: 1043–1054, 2003.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dellaporta, S.L., Wood, J., Hicks, J.B.: A plant DNA minipreparation: version II. — Plant mol. Biol. Rep. 1: 19–21, 1983.

    Article  CAS  Google Scholar 

  • Ermolaeva, M.D., Wu, M., Eisen, J.A., Salzberg, S.L.: The age of the Arabidopsis thaliana genome duplication. — Plant mol. Biol. 51: 859–866, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Fursova, O.V., Pogorelko, G.V., Tarasov, V.A.: Identification of ICE2, a gene involved in cold acclimation which determines freezing tolerance in Arabidopsis thaliana. — Gene 429: 98–103, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Hall, T.A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. — Nucl. Acids Symp. Ser. 41: 95–98, 1999.

    CAS  Google Scholar 

  • Hannah, M.A., Wiese, D., Freund, S., Fiehn, O., Heyer, A.G., Hincha, D.K.: Natural genetic variation of freezing tolerance in Arabidopsis. — Plant Physiol. 142: 98–112, 2006.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • He, X., Zhang, J.: Rapid subfunctionalization accompanied by prolonged and substantial neofunctionalization in duplicate gene evolution. — Genetics 169: 1157–1164, 2005.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kanaoka, M.M., Pillitteri, L.J., Fujii, H., Yoshida, Y., Bogenschutz, N.L., Takabayashi, J., Zhu, J-K., Torii, K.U.: SCREAM/ICE1 and SCREAM2 specify three cell-state transitional steps leading to Arabidopsis stomatal differentiation. — Plant Cell 20: 1775–1785, 2008.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Koornneef, M., Alonso-Blanco, C., Vreugdenhil, D.: Naturally occurring genetic variation in Arabidopsis thaliana. — Annu. Rev. Plant Biol. 55: 141–172, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Kurbidaeva, A., Ezhova, T., Novokreshchenova, M.: Arabidopsis thaliana ICE2 gene: phylogeny, structural evolution and functional diversification from ICE1. — Plant Sci. 229: 10–22, 2014.

    Article  CAS  PubMed  Google Scholar 

  • Le Corre, V., Roux, F., Reboud, X.: DNA polymorphism at the FRIGIDA gene in Arabidopsis thaliana: extensive nonsynonymous variation is consistent with local selection for flowering time. — Mol. Biol. Evol. 19: 1261–1271, 2002.

    Article  PubMed  Google Scholar 

  • Liu, H., Han, H., Li, J., Wong, L.: DNAFSMiner: a web-based software tool box to recognize two types of functional sites in DNA sequences. — Bioinformatics 21: 671–673, 2005.

    Article  CAS  PubMed  Google Scholar 

  • McDonald, J.H.: Detecting non-neutral heterogeneity across a region of DNA sequence in the ratio of polymorphism to divergence. — Mol. Biol. Evol. 13: 253–260, 1996.

    Article  CAS  PubMed  Google Scholar 

  • McDonald, J.H.: Improved tests for heterogeneity across a region of DNA sequence in the ratio of polymorphism to divergence. — Mol. Biol. Evol. 15: 377–384, 1998.

    Article  CAS  PubMed  Google Scholar 

  • McKhann, H.I., Gery, C, Bérard, A, Lévêque, S, Zuther, E, Hincha, D.K., De Mita, S., Brunel, D., Téoulé, E.: Natural variation in CBF gene sequence, gene expression and freezing tolerance in the Versailles core collection of Arabidopsis thaliana. — BMC Plant Biol. 8: 105, 2008.

    Article  PubMed Central  PubMed  Google Scholar 

  • Medina, J., Catalá, R., Salinas, J.: The CBFs: three arabidopsis transcription factors to cold acclimate. — Plant Sci. 180: 3–11, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Mitchell-Olds, T., Schmitt, J.: Genetic mechanisms and evolutionary significance of natural variation in Arabidopsis. —. Nature 441: 947–952, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Nordborg, M., Hu, T.T., Ishino, Y., Jinal, J., Christopher, T., Zheng, H., Bakker, E., Calabrese, P., Gladstone, J., Goyal, R., Jakobsson, M., Kim, S., Morozov, Y., Padhukasahasram, B., Plagnol, V., Rosenberg, N.A., Shah, C., Wall, J.D., Wang, J., Zhao, K., Kalbfleisch, T., Schulz, V., Kreitman, M., Bergelson, J.: The pattern of polymorphism in Arabidopsis thaliana. — Plos Biol. 3: 1289–1299, 2005.

    Article  CAS  Google Scholar 

  • Okonechnikov, K., Golosova, O., Fursov, M.: Unipro UGENE: a unified bioinformatics toolkit. — Bioinformatics 28: 1166–1167, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Rahman, M.A., Moody, M.A., Nassuth, A.: Grape contains 4 ICE genes whose expression includes alternative polyadenylation, leading to transcripts encoding at least 7 different ICE proteins. — Environ. exp. Bot. 106: 70–78. 2014.

    Article  CAS  Google Scholar 

  • Rogers, S.W., Wells, R., Rechsteiner M.: Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. — Science 234: 364–368, 1986.

    Article  CAS  PubMed  Google Scholar 

  • Rozas, J., Sanchez-DelBarrio, J.C., Messeguer, X., Rozas, R.: DnaSP, DNA polymorphism analyses by the coalescent and other methods. — Bioinformatics 19: 2496–2497, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Saitou, N, Nei, M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. — Mol. Biol. Evol. 4: 406–425, 1987.

    CAS  PubMed  Google Scholar 

  • Schmid, K.J., Ramos-Onsins, S., Ringys-Becktein, H., Weisshaar, B., Mitchell-Olds, T.: A multilocus sequence survey in Arabidopsis thaliana reveals a genome-wide departure from a neutral model of DNA sequence polymorphism. — Genetics 169: 1601–1615, 2005.

  • Stinchcombe, J.R., Weinig, C., Ungerer, M., Olsen, K.M., Mays, C., Halldorsdottir, S.S., Purugganan, M.D., Schmitt, J.: A latitudinal cline in flowering time in Arabidopsis thaliana modulated by the flowering time gene FRIGIDA. — Proc. nat. Acad. Sci. USA 101: 4712–4717, 2004.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tajima, F.: Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. — Genetics 123: 585–595, 1989.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S.: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum Parsimony methods. — Mol. Biol. Evol. 28: 2731–2739, 2011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thomashow, M.F.: Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. — Annu. Rev. Plant. Physiol. Plant. mol. Biol. 50: 571–599, 1999.

    Article  CAS  PubMed  Google Scholar 

  • Thompson, J.D., Higgins, D.G., Gibson, T.J.: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. — Nucl. Acids Res. 22: 4673–4680. 1994.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki, K., Shinozaki, K.: A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. — Plant Cell 6: 251–264, 1994.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yoshida, K., Kamiya, T., Kawabe, A., Miyashita, N.T.: DNA polymorphism at the ACAULIS5 locus of the wild plant Arabidopsis thaliana. — Genes. Genet. Syst. 78: 11–21, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Zhen, Y., Ungerer, M.C.: Clinal variation in freezing tolerance among natural accessions of Arabidopsis thaliana. — New Phytol. 177: 419–427, 2008.

    PubMed  Google Scholar 

  • Zuther, E., Schulz, E., Childs, L.H., Hincha, D.K.: Clinal variation in the non-acclimated and cold-acclimated freezing tolerance of Arabidopsis thaliana accessions. — Plant Cell Environ. 35: 1860–1878, 2012.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kurbidaeva.

Additional information

Acknowledgments: We thank the anonymous reviewers for their many insightful comments and suggestions. This work was supported by grants RFBR №11-04-01306-a and 12-04-31535-mol_a.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurbidaeva, A., Novokreshchenova, M. & Ezhova, T. ICE genes in Arabidopsis thaliana: clinal variation in DNA polymorphism and sequence diversification. Biol Plant 59, 245–252 (2015). https://doi.org/10.1007/s10535-015-0497-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-015-0497-y

Additional key words

Navigation