Skip to main content

Advertisement

Log in

Effect of ochratoxin A and buthionine sulfoximine on proteome and ascorbate-glutathione cycle enzymes in Arabidopsis thaliana

  • Original Papers
  • Published:
Biologia Plantarum

Abstract

In this study, proteome and activities of glutathione (GSH)-related enzymes were investigated in detached leaves of Arabidopsis thaliana treated with ochratoxin A (OTA) alone or supplemented with buthionine sulfoximine (BSO, a specific inhibitor of the first step in GSH biosynthesis). A comparative proteomic study using two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption ionization-time of flight tandem mass spectrometry (MALDI-TOF/TOF MS/MS) identified 12 differentially expressed proteins mainly involved in GSH metabolism, energy metabolism, sugar metabolism, and photosynthesis. The treatment with OTA significantly enhanced the activities of glutathione-S-transferase (GST) and glutathione reductase (GR) through up-regulating the corresponding genes (GSTF7, GR1), an the diminishing effect of BSO on them counteracted the results. However, both OTA and BSO decreased the activity of ascorbate peroxidase (APX), and OTA also decreased the monodehydroascorbate reductase (MDHAR) and glutathione peroxidase (GPX) activities. Briefly, the OTA-induced phytotoxicity to the A. thaliana detached leaves was increased slightly by addition of BSO, and the fluctuation in GSH synthesis, GSH metabolism and disorder of cellular metabolism happened.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APX:

ascorbate peroxidases

ASH:

reduced ascorbate

AsA:

ascorbate

BSO:

buthionine sulfoximine

DGE:

digital gene expression

DHA:

dehydroascorbic acid

DHAR:

dehydroascorbate reductase

GSH:

reduced glutathione

GPX:

glutathione peroxidases

GR:

glutathione reductase

GSH-S:

glutathione synthase

GS2:

glutamine synthetase 2

GSSG:

oxidized glutathione

GST:

glutathione-S-transferase

HCF136:

high chlorophyll fluorescence 136

HR:

hypersensitive response

MDHAR:

monodehydroascorbate reductase

OTA:

ochratoxin A

PCD:

programmed cell death

ROS:

reactive oxygen species

TIM:

triosephosphate isomerase

References

  • Arunachalam, C., Doohan, F.M.: Trichothecene toxicity in eukaryotes: cellular and molecular mechanisms in plants and animals. — Toxicol. Lett. 217: 149–158, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Bradford, M. M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. — Anal. Biochem. 72: 248–254, 1976.

    Article  CAS  PubMed  Google Scholar 

  • Buchert, F., Forreiter, C.: Singlet oxygen inhibits ATPase and proton translocation activity of the thylakoid ATP synthase CF1CFo. — FEBS Lett. 584: 147–152, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Chang, C.C.C., Ślesak, I., Jordá, L., Sotnikov, A., Melzer, M., Miszalski, Z., Mullineaux, P.M., Parker, J.E., Karpińska, B., Karpiński, S.: Arabidopsis chloroplastic glutathione peroxidases play a role in cross talk between photooxidative stress and immune responses. — Plant Physiol. 150: 670–683, 2009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cuperus, R., Van Kuilenburg, A.B.P., Leen, R., Bras, J., Caron, H.N., Tytgat, G.A.M.: Promising effects of the 4HPR-BSO combination in neuroblastoma monolayers and spheroids. — Free Radical Biol. Med. 51: 1213–1220, 2011.

    Article  CAS  Google Scholar 

  • Dixon, D.P., Hawkins, T., Hussey, P.J., Edwards, R.: Enzyme activities and subcellular localization of members of the Arabidopsis glutathione transferase superfamily. — J. exp. Bot. 60:1207–1218, 2009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dixon, D.P., Sellars, J.D., Edwards, R.: The Arabidopsis phi class glutathione transferase AtGSTF2: binding and regulation by biologically active heterocyclic ligands. — Biochem. J. 438: 63–70, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Edwards, R., Dixon, D.P.: Plant glutathione transferases. — Method Enzymol. 401: 169–186, 2005.

    Article  CAS  Google Scholar 

  • Fu, L.H., Wang, X.F., Eyal, Y., She, Y.M., Donald, L.J., Standing, K.G., Ben-Hayyim, G.: A selenoprotein in the plant kingdom: mass spectrometry confirms that an opal codon (UGA) encodes selenocysteine in Chlamydomonas reinhardtii glutathione peroxidase. — J. biol. Chem. 277: 25983–25991, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Gardiner, S.A., Boddu, J., Berthiller, F., Hametner, C., Stupar, R.M., Adam, G., Muehlbauer, G.J.: Transcriptome analysis of the barley-deoxynivalenol interaction: evidence for a role of glutathione in deoxynivalenol detoxification. — Mol. Plant- Microbe Interact. 23: 962–976, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Gill, S.S., Tuteja, N.: Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. — Plant Physiol. Biochem. 48: 909–930, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Gómez, C., Bragulat, M.R., Abarca, M.L., Mínguez, S., Cabañes, F.J.: Ochratoxin A-producing fungi from grapes intended for liqueur wine production. — Food Microbiol. 23: 541–545, 2006.

    Article  PubMed  Google Scholar 

  • Hara, M., Yatsuzuka, Y., Tabata, K., Kuboi, T.: Exogenously applied isothiocyanates enhance glutathione S-transferase expression in Arabidopsis but act as herbicides at higher concentrations. — J. Plant Physiol. 167: 643–649, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Hossain, M.A., Asada, K.: Purification of dehydroascorbate reducatse from spinach and its characterization as a thiol enzyme. — Plant cell Physiol. 25: 85–92, 1984.

    CAS  Google Scholar 

  • Jones, D.P.: Redox potential of GSH/GSSG couple: assay and biological significance. — Methods Enzymol. 348: 93–112, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Khoury, A., Atoui, A.: Ochratoxin A: general overview and actual molecular status. — Toxins 2: 461–493, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  • Knöraer, O.C., Durner, J., Böger, P.: Alterations in the antioxidative system of suspension-cultured soybean cells (Glycine max) induced by oxidative stress. — Physiol. Plant. 97: 388–396, 1996.

    Article  Google Scholar 

  • Kumar, C., Igbaria, A., D'autreaux, B., Planson, A.G., Junot, C., Godat, E., Bachhawat, A.K., Delaunay-Moisan, A., Toledano, M.B.: Glutathione revisited: a vital function in iron metabolism and ancillary role in thiol-redox control. — Embo. J. 30: 2044–2056, 2011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kumar, S.P., Varman, P.A.M., Kumari, B.D.R.: Identification of differentially expressed proteins in response to Pb stress in Catharanthus roseus. — Afr. J. environ. Sci. Technol. 5: 689–699, 2011.

    CAS  Google Scholar 

  • Lerdal, D., Bistoni, M.B., Pelliccioni, P., Litterio, N.: Allium cepa as a biomonitor of ochratoxin A toxicity and genotoxicity. — Plant Biol. 12: 685–688, 2010.

    Google Scholar 

  • Li, X.J., Yang, M.F., Zhu, Y., Liang, Y., Shen, S.H.: Proteomic analysis of salt stress responses in rice shoot. — J. Plant Biol. 54: 384–395, 2011.

    Article  CAS  Google Scholar 

  • Liang, Z.H.: Detection of Ochratoxin A and Analysis of Ochratoxingenic-Fungi in Foodstuff. — Dissertation, China Agriculture University, Beijing 2008.

    Google Scholar 

  • Liu, Y.J., Han, X.M., Ren, L.L., Yang, H.L., Zeng, Q.Y.: Functional divergence of the glutathione S-transferase supergene family in Physcomitrella patens reveals complex patterns of large gene family evolution in land plants. — Plant Physiol. 161: 773–786, 2013.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ma, F.W., Cheng, L.L.: Exposure of the shaded side of apple fruit to full sun leads to upregulation of both xanthophyll cycle and the ascorbate-glutathione cycle. — Plant Sci. 166: 1479–1486, 2004.

    Article  CAS  Google Scholar 

  • Maaroufi-Dguimi H., Debouba M., Gaufichon L., Clément G., Gouia H., Hajjaji A., Suzuki A.: An Arabidopsis mutant disrupted in ASN2 encoding asparagine synthetase 2 exhibits low salt stress tolerance. — Plant Physiol Biochem. 49: 623–628, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Meister, A.: Glutathione metabolism. — Methods Enzymol. 251: 3–7, 1995.

    Article  CAS  PubMed  Google Scholar 

  • Meyer, A.J.: The integration of glutathione homeostasis and redox signaling. — J. Plant Physiol. 165: 1390–1403, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Nakano, Y., Asada, K.: Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. — Plant Cell Physiol. 22: 867–880, 1981.

    CAS  Google Scholar 

  • Noctor, G., Gomez, L., Vanacker, H., Foyer, C.H.: Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signaling. — J. exp. Bot. 53: 1283–1304, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Ogawa, K.: Glutahione-associated regulation of plant growth and stress responses. — Antioxidant Redox Signal. 7: 973–981, 2005.

    Article  CAS  Google Scholar 

  • Paciolla, C., Ippolito, M.P., Logrieco, A., Dipierro, N., Mulè, G., Dipierro, S.: A different trend of antioxidant defence responses makes tomato plants less susceptible to beauvericin than to T-2 mycotoxin phytotoxicity. — Physiol. mol. Plant. Pathol. 72: 3–9, 2008.

    Article  CAS  Google Scholar 

  • Peng, X.L., Xu, W.T., Wang, Y., Huang, K.L., Liang, Z.H., Zhao, W.W., Luo, Y.B.: Mycotoxin ochratoxin A-induced cell death and changes in oxidative metabolism of A. thaliana — Plant Cell Rep. 29: 153–161, 2010.

    Article  PubMed  Google Scholar 

  • Penninckx, M.: A short review on the role of glutathione in the response of yeasts to nutritional, environmental, and oxidative stresses. — Enzyme Microbiol. Technol. 26: 737–742, 2000.

    Article  CAS  Google Scholar 

  • Pérez-Bueno, M.L., Rahoutei, J., Sajnani, C., García-Luque, I., Barón, M.: Proteomic analysis of the oxygen-evolving complex of photosystem II under biotic stress: studies on Nicotiana benthamiana infected with tobamoviruses. — Proteomics 4: 418–425, 2004.

    Article  PubMed  Google Scholar 

  • Sappl, P.G., Carroll, A.J., Clifton, R., Lister, R., Whelan, J., Millar, A.H., Singh, K.B.: The Arabidopsis glutathione transferase gene family displays complex stress regulation and co-silencing multiple genes results in altered metabolic sensitivity to oxidative stress. — Plant J. 58: 53–68, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, S.S., Dietz, K.J.: The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. — J. exp. Bot. 57: 711–726, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Shinya, Y., Kentaro, I., Atsushi, T., Seiko, I., Kunio, I., Noriko, I., Tsuyoshi, E., Fumihiko, S.: Three PsbQ-like proteins are required for the function of the chloroplast NAD(P)H dehydrogenase complex in Arabidopsis. — Plant Cell Physiol. 51: 866–876, 2010.

    Article  Google Scholar 

  • Srivalli, S., Khanna-Chopra, R.: Role of glutathione in abiotic stress tolerance. — In: Khan, N.A. (ed.): Sulfur Assimilation and Abiotic Stress in Plants. Pp. 207–208. Springer-Verlag, Berlin — Heidelberg 2008.

    Chapter  Google Scholar 

  • Szalai, G., Kell, T., Galiba, G., Kocsy, G.: Glutathione as an antioxidant and regulatory molecule in plants under abiotic stress conditions. — J. Plant Growth Regul. 28: 66–80, 2009.

    Article  CAS  Google Scholar 

  • Taira, M., Valtersson, U., Burkhardt, B.A., Ludwig, R.: Arabidopsis thaliana GLN2-encoded glutamine synthetase is dual targeted to leaf mitochondria and chloroplasts. — Plant Cell 16: 2048–2058, 2004.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tittlemier, S.A., Varga, E., Scott, P.M., Krska, R.: Sampling of cereals and cereal-based foods for the determination of ochratoxin A: an overview. — Food Addit. Contam. A. 28: 775–785, 2011.

    Article  CAS  Google Scholar 

  • Ursini, F., Maiorino, M., Brigelius-Flohé, R., Aumann, K.D., Roveri, A., Schomburg, D., Flohé, L.: Diversity of glutathione peroxidases. — Methods Enzymol. 252: 38–53, 1995.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Hao, J.R., Zhao, W.W., Yang, Z.J., Wu, W.H., Zhang, Y., Xu, W.T., Luo, Y.B., Huang, K.L.: Comparative proteomics and physiological characterization of Arabidopsis thaliana seedlings in responses to ochratoxin A. — Plant mol. Biol. 82: 321–337, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Peng, X.L., Xu, W.T., Luo, Y.B., Zhao, W.W., Hao, J.R., Liang, Z.H., Zhang, Y., Huang, K.L.: Transcript and protein profiling analysis of OTA-induced cell death reveals the regulation of the toxicity response process in Arabidopsis thaliana. — J. exp. Bot. 63: 2171–2187, 2012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang, Y., Zhao, W., Hao, J., Xu, W., Luo, Y., Wu, W., Yang, Z., Liang, Z., Huang, K.: Changes in biosynthesis and metabolism of glutathione upon ochratoxin A stress in Arabidopsis thaliana. — Plant Physiol. Biochem. 79: 10–18, 2014.

    Article  CAS  PubMed  Google Scholar 

  • Wójcik, M., Tukiendorf, A.: Glutathione in adaptation of Arabidopsis thaliana to cadmium stress. — Biol. Plant. 55: 125–132, 2011.

    Article  Google Scholar 

  • Yan, S.P., Zhang, Q.Y., Tang, Z.C., Su, W.A., Sun, W.N.: Comparative proteomic analysis provides new insights into chilling stress responses in rice. — Mol. cell. Proteomics 5: 484–496, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, X.Q., Guo, Y.B., Song, Y.P., Sun, W., Yu, C.H., Zhao, X.H., Wang, H.Y., Jiang, H.C., Li, Y.M., Qian, X.H., Jiang, Y., He, F.C.: Proteomic analysis of individual variation in normal livers of human beings using difference gel electrophoresis. — Proteomics 6: 5260–5268, 2006.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. T. Xu.

Additional information

Acknowledgements: We thank all members of the Kunlun Huang's Laboratory who contributed to the project, the mass spectrometry support from the Beijing Proteome Research Center and the Support Projects (D121100003112001, D121100003112004). The first two authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, J.R., Wang, Y., Zhao, W.W. et al. Effect of ochratoxin A and buthionine sulfoximine on proteome and ascorbate-glutathione cycle enzymes in Arabidopsis thaliana . Biol Plant 59, 331–340 (2015). https://doi.org/10.1007/s10535-015-0492-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-015-0492-3

Additional key words

Navigation