Skip to main content
Log in

Responses of two barley cultivars differing in their salt tolerance to moderate and high salinities and subsequent recovery

  • Original Papers
  • Published:
Biologia Plantarum

Abstract

Two barley (Hordeum vulgare L.) cultivars, Czech spring cv. Amulet and Syrian landrace Tadmor, were subject to different salinity treatments: 1) the NaCl concentration was gradually increased from 0 (the control) to either 100 (a moderate salt stress) or 300 mM NaCl (a high salt stress), 2) the NaCl concentration was increased directly either from 0 to 300 mM NaCl or from 100 to 300 mM NaCl, and 3) a recovery when all variants were transferred back to control conditions and cultivated for seven additional days before sampling. The following parameters were determined: water saturation deficit (WSD), osmotic potential (ψs), leaf proline content, maximum quantum yield of photosystem (PS) II photochemistry (measured as variable to maximum chlorophyll a fluorescence ratio, Fv/Fm), and relative accumulation of dehydrins (DHN). Both quantitative and qualitative differences in dehydrins were found between NaCl-treated Amulet and Tadmor. A principal component analysis (PCA) of all experiment data revealed a differential ability of Amulet and Tadmor to recover after the 300 mM NaCl treatments indicating better salt tolerance in Tadmor. Correlation analyses have shown statistically significant correlations between WSD, ψs, proline, and DHN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DHN:

dehydrins

Fv/Fm :

variable to maximum chlorophyll a fluorescence ratio

PCA:

principal component analysis

PS:

photosystem

WSD:

water saturation deficit

ψs :

osmotic potential

References

  • Battaglia, M., Olvera-Carrillo, Y., Garciarrubio, A., Campos, F., Covarrubias, A.A.: The enigmatic LEA proteins and other hydrophilins. — Plant Physiol. 148: 6–24, 2008.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bose, J., Rodrigo-Moreno, A., Shabala, S.: ROS homeostasis in halophytes in the context of salinity stress tolerance. — J. exp. Bot. 65: 1241–1257, 2014.

    Article  CAS  PubMed  Google Scholar 

  • Bravo, L.A., Close, T.J., Corcuera, L.J., Guy, C.L.: Characterization of an 80-kDa dehydrin-like protein in barley responsive to cold acclimation. — Physiol. Plant. 106: 177–183, 1999.

    Article  CAS  Google Scholar 

  • Brini, F., Hanin, M., Lumbreras, V., Irar, S., Pages, M., Masmoudi, K.: Functional characterization of DHN-5, a dehydrin showing a differential phosphorylation pattern in two Tunisian durum wheat (Triticum durum Desf.) varieties with marked differences in salt and drought tolerance. — Plant Sci. 172: 20–28, 2007.

    Article  CAS  Google Scholar 

  • Caruso, G., Cavaliere, C., Guarino, C., Gubbiotti, R., Foglia, P., Lagana, A.: Identification of changes in Triticum durum L. leaf proteome in response to salt stress by two-dimensional electrophoresis and MALDI-TOF mass spectrometry. — Anal. bioanal. Chem. 391: 381–390, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Z., Cuin, T.A., Zhou, M., Twomey, A., Naidu, B.P., Shabala, S.: Compatible solute accumulation and stressmitigating effects in barley genotypes contrasting in their salt tolerance. — J. exp. Bot. 58: 4245–4255, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Choi, D.W., Zhu, B., Close, T.J.: The barley (Hordeum vulgare L.) dehydrin multigene family: sequences, allele types, chromosome assignments, and expression characteristics of 11 Dhn genes of cv. Dicktoo. — Theor. appl. Genet. 98: 1234–1247, 1999.

    Article  CAS  Google Scholar 

  • Colmer, T.D., Flowers, T.J., Munns, R.: Use of wild relatives to improve salt tolerance in wheat. — J. exp. Bot. 57: 1059–1078, 2006.

    Article  CAS  PubMed  Google Scholar 

  • De Lacerda, C.F., Cambraia, J., Oliva, M.A., Ruiz, H.A., Prisco, J.T.: Solute accumulation and distribution during shoot and leaf development in two sorghum genotypes under salt stress. — Environ. exp. Bot. 49: 107–120, 2003.

    Article  Google Scholar 

  • Flowers, T.J.: Improving crop salt tolerance. — J. exp. Bot. 55: 307–319, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Hong, Z., Lakkineni, K., Zhang, Z., Verma, D.P.S.: Removal of feedback inhibition of Δ1-pyrroline-5-carboxylate synthetase results in increased proline accumualtion and protection of plants from osmotic stress. — Plant Physiol. 122: 1129–1136, 2000.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Islam, S., Malik, A.I., Islam, A.K.M.R., Colmer, T.D.: Salttolerance in a Hordeum marinum-Triticum aestivum amphiploid, and its parents. — J. exp. Bot. 58: 1219–1229, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Jiménez-Bremont, J.F., Becerra-Flora, A., Hernández-Lucero, E., Rodríguez-Kessler, M., Acosta-Gallegos, J.A., Ramírez-Pimentel, J.G.: Proline accumulation in two bean cultivars under salt stress and the effect of polyamines and ornithine. — Biol. Plant. 50: 763–766, 2006.

    Article  Google Scholar 

  • Kim, D.W., Rakwal, R., Agrawal, G.K., Jung, Y.H., Shibato, J., Jwa, N.S., Iwahashi, Y., Iwahashi, H., Kim, D.H., Shim, I.S., Usui, K.: A hydroponic rice seedling culture model system for investigating proteome of salt stress in rice leaf. — Electrophoresis 26: 4521–4539, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Kishor, P., Hong, Z., Miao, G.H., Hu, C., Verma, D.: Overexpression of [delta]-pyrroline-5-carboxylate synthatase increases proline production and confers osmotolerance in transgenic plants. — Plant Physiol. 108: 1387–1394, 1995.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kobayashi, F., Takumi, S., Nakata, M., Ohno, R., Nakamura, T., Nakamura, C.: Comparative study of the expression profiles of the Cor/Lea gene family in two wheat cultivars with contrasting levels of freezing tolerance. — Physiol. Plant. 120: 585–594, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Kosová, K., Holková, L., Prášil, I.T., Prášilová, P., Bradáčová, M., Vítámvás, P., Čapková, V.: Expression of dehydrin 5 during the development of frost tolerance in barley (Hordeum vulgare). — J. plant Physiol. 165: 1142–1151, 2008.

    Article  PubMed  Google Scholar 

  • Kosová, K., Prášil, I.T., Vítámvás, P.: Role of dehydrins in plant stress response. — In Pessarakli, M. (ed.): Handbook of Plant and Crop Stress. 3rd Ed. Pp. 239–285. CRC Press, Taylor & Francis, Boca Raton 2010.

    Chapter  Google Scholar 

  • Kosová, K., Vítámvás, P., Prášilová, P., Prášil, I.T.: Accumulation of WCS120 and DHN5 proteins in differently frost-tolerant wheat and barley cultivars grown under a broad temperature scale. — Biol Plant. 57: 105–112, 2013.

    Article  Google Scholar 

  • Krause, G.H., Weis, E.: Chlorophyll fluorescence and photosynthesis: the basics. — Annu. Rev. Plant Physiol. Plant mol. Biol. 42: 313–349, 1991.

    Article  CAS  Google Scholar 

  • Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. — Nature 277: 680–685, 1970.

    Article  Google Scholar 

  • Larcher, W.: Physiological Plant Ecology. 4th Ed. — Springer-Verlag, Berlin — Heidelberg 2003.

    Book  Google Scholar 

  • Lawlor, D.W.: Genetic engineering to improve plant performance under drought: physiological evaluation of achievements, limitations, and possibilities. — J. exp. Bot. 64: 83–108, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Levitt, J.: Responses of plants to environmental stress. Chilling, freezing and high temperature stresses. 2nd Ed. — Academic Press, New York 1980.

    Google Scholar 

  • Lichtenthaler, H.K., Rinderle, U.: The role of chlorophyll fluorescence in the detection of stress conditions in plants. — Crit. Rev. anal. Chem. 19: 29–85, 1988.

    Article  Google Scholar 

  • Munns, R.: Comparative physiology of salt and water stress. — Plant Cell Environ. 25: 239–250, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Munns, R.: Genes and salt tolerance: bringing them together. — New Phytol. 167: 645–663, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Munns, R., Tester, M.: Mechanisms of salinity tolerance. — Annu. Rev. Plant Biol. 59: 651–681, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Ohno, R., Takumi, S., Nakamura, C.: Kinetics of transcript and protein accumulation of a low-molecular weight wheat LEA-D11 dehydrin in response to low temperature. — J. Plant Physiol. 160: 193–200, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Ozturk, Z.N., Talamé, V., Deyholos, M., Michalowski, C.B., Galbraith, D.W., Gozukirmizi, N., Tuberosa, R., Bohnert, H.J.: Monitoring large-scale changes in transcript abundance in drought- and salt-stressed barley. — Plant mol. Biol. 48: 551–573, 2002.

    Article  CAS  Google Scholar 

  • Prášil, I.T., Prášilová, P., Pánková, K.: The relationship between vernalization requirement and frost tolerance in substitution lines of wheat. — Biol. Plant. 49: 195–200, 2005.

    Article  Google Scholar 

  • Rasoulnia, A., Bihamta, M.R., Peyghambari, S.A., Alizadeh, H., Rahnama, A.: Proteomic response of barley leaves to salinity. — Mol. Biol. Rep. 38: 5055–5063, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Rizza, F., Pagani, D., Stanca, A.M., Cattivelli, L.: Use of chlorophyll fluorescence to evaluate the cold acclimation and freezing tolerance of winter and spring oats. — Plant Breed. 120: 389–396, 2001.

    Article  Google Scholar 

  • Rorat, T.: Plant dehydrins — tissue location, structure and function. — Cell. mol. Biol. Lett. 11: 536–556, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Serraj, R., Sinclair, T.R.: Osmolyte accumulation: can it really help increase crop yield under drought conditions? — Plant Cell Environ. 25: 333–341, 2002.

    Article  PubMed  Google Scholar 

  • Slavík, B.: Relationship between the osmotic potential of cell sap and the water saturation deficit during the wilting of leaf tissue. — Biol. Plant. 5: 258–264, 1963.

    Article  Google Scholar 

  • Suprunova, T., Krugman, T., Fahima, T., Chen, G., Shams, I., Korol, A., Nevo, E.: Differential expression of dehydrin genes in wild barley, Hordeum spontaneum, associated with resistance to water deficit. — Plant Cell Environ. 27: 1297–1308, 2004.

    Article  CAS  Google Scholar 

  • Thomashow, M.F.: Plant cold acclimation. Freezing tolerance genes and regulatory mechanisms. — Annu. Rev. plant Physiol. Plant mol. Biol. 50: 571–599, 1999.

    Article  CAS  PubMed  Google Scholar 

  • Tommasini, L., Svensson, J.T., Rodriguez, E.M., Wahid, A., Malatrasi, M., Kato, K., Wanamaker, S., Resnik, J., Close, T.J.: Dehydrin gene expression provides an indicator of low temperature and drought stress: transcriptome-based analysis of barley (Hordeum vulgare L.). — Funct. integr. Genomics 8: 387–405, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Van Zee, K., Chen, F.Q., Hayes, P.M., Close, TJ., Chen, T.H.H.: Cold-specific induction of a dehydrin gene family member in barley. — Plant Physiol. 108: 1233–1239, 1995.

    PubMed Central  PubMed  Google Scholar 

  • Vítámvás, P., Kosová, K., Prášilová, P., Prášil, I.T.: Accumulation of WCS120 protein in wheat cultivars grown at 9 °C or 17 °C in relation to their winter survival. — Plant Breed. 129: 611–616, 2010

    Article  Google Scholar 

  • Vítámvás, P., Prášil, I.T.: WC S120 protein family and frost tolerance during cold acclimation, deacclimation and reacclimation of winter wheat. — Plant Physiol. Biochem. 46: 970–976, 2008.

    Article  PubMed  Google Scholar 

  • Voetberg, G., Stewart, C.R.: Steady state proline levels in salt-shocked barley leaves. — Plant Physiol. 76: 567–570, 1984.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Walia, H., Wilson, C., Ismail, A.M., Close, T.J., Cui, X.: Comparing genomic expression patterns across plant species reveals highly diverged transcriptional dynamics in response to salt stress. — BMC Genomics 10: 398, 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki, K., Shinozaki, K.: Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. — Annu. Rev. Plant Biol. 57: 781–803, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, J., Nguyen, H.T., Blum, A.: Genetic analysis of osmotic adjustment in crop plants. — J. exp. Bot. 50: 291–302, 1999.

    Article  CAS  Google Scholar 

  • Zhu, B., Choi, D.W., Fenton, R., Close, T.J.: Expression of the barley dehydrin multigene family and the development of freezing tolerance. — Mol. gen. Genet. 264: 145–153, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, J.K.: Salt and drought stress signal transduction in plants. — Annu. Rev. Plant Biol. 53: 247–273, 2002.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Kosová.

Additional information

Acknowledgements: The work was supported by the Czech Ministry of Education No. LD11069 as part of COST action FA0901 and by the Czech Ministry of Agriculture No. MZe RO0414. The authors thank Dr. Peter Lemkin for a linguistic revision of the whole manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kosová, K., Vítámvás, P., Hlaváčková, I. et al. Responses of two barley cultivars differing in their salt tolerance to moderate and high salinities and subsequent recovery. Biol Plant 59, 106–114 (2015). https://doi.org/10.1007/s10535-014-0465-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-014-0465-y

Additional key words

Navigation