Skip to main content
Log in

Alleviation of osmotic stress in Brassica napus, B. campestris, and B. juncea by ascorbic acid application

  • Original Papers
  • Published:
Biologia Plantarum

Abstract

The roles of ascorbic acid (AsA, 1 mM) under an osmotic stress [induced by 15 % (m/v) polyethylene glycol, PEG-6000] were investigated by examining morphological and physiological attributes in Brassica species. The osmotic stress reduced the fresh and dry masses, leaf relative water content (RWC), and chlorophyll (Chl) content, whereas increased the proline (Pro), malondialdehyde (MDA), and H2O2 content, and lipoxygenase (LOX) activity. The ascorbate content in B. napus, B. campestris, and B. juncea decreased, increased, and remained unaltered, respectively. The dehydroascorbate (DHA) content increased only in B. napus. The AsA/DHA ratio was reduced by the osmotic stress in all the species except B. juncea. The osmotic stress increased the glutathione (GSH) content only in B. juncea, but increased the glutathione disulfide (GSSG) content and decreased the GSH/GSSG ratio in all the species. The osmotic stress increased the activities of ascorbate peroxidase (APX) (except in B. napus), glutathione reductase (GR) (except in B. napus), glutathione S-transferase (GST) (except in B. juncea), and glutathione peroxidase (GPX), and decreased the activities of catalase (CAT) and monodehydroascorbate reductase (MDHAR) (only in B. campestris). The osmotic stress decreased the glyoxalase I (Gly I) and increased glyoxalase II (Gly II) activities. The application of AsA in combination with PEG improved the fresh mass, RWC, and Chl content, whereas decreased the Pro, MDA, and H2O2 content in comparison with PEG alone. The AsA addition improved AsA-GSH cycle components and improved the activities of all antioxidant and glyoxalase enzymes in most of the cases. So, exogenous AsA improved physiological adaptation and alleviated oxidative damage under the osmotic stress by improving the antioxidant and glyoxalase systems. According to measured parameters, B. juncea can be recognized as more drought tolerant than B. napus and B. campestris.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AO:

ascorbate oxidase

APX:

ascorbate peroxidase

AsA:

ascorbic acid (ascorbate)

BSA:

bovine serum albumin

CAT:

catalase

CDNB:

1-chloro-2,4-dinitrobenzene

Chl:

chlorophyll

DHA:

dehydroascorbate

DHAR:

dehydroascorbate reductase

DTNB:

5,5′-dithio-bis-(2-nitrobenzoic acid)

EDTA:

ethylenediaminetetraacetic acid

Gly I:

glyoxalase I

Gly II:

glyoxalase II

GPX:

glutathione peroxidase

GR:

glutathione reductase

GSH:

reduced glutathione

GSSG:

oxidized glutathione

GST:

glutathione S-transferase

LOX:

lipoxygenase

MDA:

malondialdehyde

MDHA:

monodehydroascorbate

MDHAR:

monodehydroascorbate reductase

MG:

methylglyoxal

NTB:

2-nitro-5-thiobenzoic acid

PEG:

polyethylene glycol

Pro:

Proline

ROS:

reactive oxygen species

RWC:

relative water content

SLG:

S-D-lactoylglutathione

TBA:

thiobarbituric acid

TCA:

trichloroacetic acid

References

  • Alam, M.M., Hasanuzzaman, M., Nahar, K., Fujita, M.: Exogenous salicylic acid ameliorates short-term drought stress in mustard (Brassica juncea L.) seedlings by upregulating the antioxidant defense and glyoxalase system. — Aust. J. Crop Sci. 7: 1053–1063, 2013.

    CAS  Google Scholar 

  • Al-Ghamdi, A.A.: Evaluation of oxidative stress tolerance in two wheat (Triticum aestivum) cultivars in response to drought. — Int. J. agr. Biol. 11: 7–12, 2009.

    CAS  Google Scholar 

  • Alves, A.A.C., Setter, T.L.: Response of cassava leaf area expansion to water deficit: cell proliferation, cell expansion and delayed development. — Ann. Bot. 94: 605–613, 2004.

    Article  PubMed  Google Scholar 

  • Amin, B., Mahleghah, G., Mahmood, H.M.R., Hossein. M.: Evaluation of interaction effect of drought stress with ascorbate and salicylic acid on some of physiological and biochemical parameters in okra (Hibiscus esculentus L.). — Res. J. biol. Sci. 4: 380–387, 2009.

    Google Scholar 

  • Arnon, D.T.: Copper enzymes in isolated chloroplasts: polyphenoloxidase in Beta vulgaris. — Plant Physiol. 24: 1–15, 1949.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Asada, K.: The water-water cycle in chloroplasts, scavenging of active oxygens and dissipation of excess photons. — Annu. Rev. Plant Physiol. Plant mol. Biol. 50: 601–639, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Asadi, K.Z.H., Ghorbanli, M., Sateei, A.: The effect of drought stress and exogenous ascorbate on photosynthetic pigments, flavonoids, phenol compounds and lipid peroxidation in Pimpinella anisum L. — Iran J. med. arom. Plants. 25: 469–457, 2010.

    Google Scholar 

  • Ashraf, M., Foolad, M.R.: Roles of glycinebetaine and proline in improving plant abiotic resistance. — Environ. exp. Bot. 59: 206–216, 2007.

    Article  CAS  Google Scholar 

  • Athar, H., Khan, A., Ashraf, M.: Exogenously applied ascorbic acid alleviates salt-induced oxidative stress in wheat. — Environ. exp. Bot. 63: 224–231, 2008.

    Article  CAS  Google Scholar 

  • Aziz, A., Larher, F.: Osmotic stress induced changes in lipid composition and peroxidation in leaf discs of Brassica napus L. — J. Plant Physiol. 153: 754–762, 1998.

    Article  CAS  Google Scholar 

  • Baghizadeh, A., Ghorbanli, M., Rezaei, H.M., Mozafri, H.: Evaluation of Interaction effect of drought stress with ascorbate and salicylic acid on some of physiological and Biochemical parameters in okra (Hibiscus esculentus L.). — Res. J. biol. Sci. 4: 380–387, 2009.

    Google Scholar 

  • Baghizadeh, A., Hajmohammadrezaei, M.: Effect of drought stress and its interaction with ascorbate and salicylic acid on okra (Hibiscus esculents L.) germination and seedling growth. — J. Stress Physiol. Biochem. 7: 55–65, 2011.

    Google Scholar 

  • Barrs, H.D., Weatherley, P.E.: A re-examination of the relative turgidity technique for estimating water deficits in leaves. — Aust. J. Biol. Sci. 15: 413–428, 1962.

    Google Scholar 

  • Bashor, C.J., Dalton, D.A.: Effects of exogenous application and stem infusion of ascorbate on soybean (Glycine max) root nodules. — New Phytol. 142: 19–26, 1999.

    Article  CAS  Google Scholar 

  • Bates, L.S., Waldren, R.P., Teari, D.: Rapid determination of free proline for water stress studies. — Plant Soil. 39: 205–207, 1973.

    Article  CAS  Google Scholar 

  • Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. — Anal. Biochem. 72: 248–254, 1976.

    Article  PubMed  CAS  Google Scholar 

  • Bybordi, A.: Effect of ascorbic acid and silicium on photosynthesis, antioxidant enzyme activity, and fatty acid contents in canola exposure to salt stress. — J. integr. Agr. 11: 1610–1620, 2012.

    Article  CAS  Google Scholar 

  • Costa, L.D., Vedove, G.D., Gianquinto, G., Giovanardi, R., Peressotti, A.: Yield, water use efficiency and nitrogen uptake in potato: influence of drought stress. — Potato Res. 40: 19–34, 1997.

    Article  Google Scholar 

  • Darvishan, M., Tohidi-Moghadam, H.R., Zahedi, H.: The effects of foliar application of ascorbic acid (vitamin C) on physiological and biochemical changes of corn (Zea mays L) under irrigation withholding in different growth stages. — Maydica 58: 195–200, 2013.

    Google Scholar 

  • De Souza, P.I., Egli, D.B., Bruening, W.P.: Water stress during seed filing and leaf senescence in soybean. — Agron. J. 89: 807–812, 1997.

    Article  Google Scholar 

  • De Tullio, M.C.: How does ascorbic acid prevent scurvy? A survey of the nonantioxidant functions of vitamin C. — In: Asard, H. (ed.): Vitamin C: its Function and Biochemistry in Animals and Plants. Pp. 176–190. Garland Science/BIOS Scientific Publishers, London — New York 2004.

    Google Scholar 

  • Deeba, F., Pandey. A.K., Ranjana, S., Mishra, A., Singh, R., Sharma, Y., Shirke, P.A., Pandey, V.: Physiological and proteomic responses of cotton (Gossypium herbaceum L.) to drought stress. — Plant Physiol. Biochem. 53: 6–18, 2012.

    Article  PubMed  CAS  Google Scholar 

  • Del Río, L.A., Sandalio, L.M., Corpas, F.J., Palma, J.M., Barroso, J.B.: Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging, and role in cell signaling. — Plant Physiol. 141: 330–335, 2006.

    Article  PubMed  PubMed Central  Google Scholar 

  • Desai, K.M., Chang, T., Wang, H., Banigesh, A., Dhar, A., Liu, J., Untereiner, A., Wu, L.: Oxidative stress and aging: is methylglyoxal the hidden enemy? — Can. J. Physiol. Pharmacol. 88: 273–284, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Doderer, A., Kokkelink, I., Van der, Veen. S., Valk, B., Schram, A., Douma, A.: Purification and characterization of two lipoxygenase isoenzymes from germinating barley. — Biochem. biophys. Acta. 112: 97–104, 1992.

    Google Scholar 

  • Dolatabadian, A., Jouneghani, R.S.: Impact of exogenous ascorbic acid on antioxidant activity and some physiological traits of common bean subjected to salinity stress. — Not. Bot. Hort. Agrobot. Cluj. 37: 165–172, 2009.

    CAS  Google Scholar 

  • Dolatabadian, A., Sanavy, S.A.M., Sharifi, M.: Alleviation of water deficit stress effects by foliar application of ascorbic acid on Zea mays L. — J. Agron. Crop Sci. 195: 347–355, 2009.

    Article  CAS  Google Scholar 

  • Dreesen, F.E., De Boecka, H.J., Janssensa, I.A., Nijs, I.: Summer heat and drought extremes trigger unexpected changes in productivity of a temperate annual/biannual plant community. — Environ. exp. Bot. 79: 21–30, 2012.

    Article  Google Scholar 

  • Elia, A.C., Galarini, R., Taticchi, M.I., Dorr, A.J.M., Mantilacci, L.: Antioxidant responses and bioaccumulation in Ictalurus melas under mercury exposure. — Ecotoxicol. Environ. Safety 55: 162–167, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Fabro, G., Kovács, I., Pavet, V., Szabados, L., Alvarez, M.E.: Proline accumulation and AtP5CS2 gene activation are induced by plant-pathogen incompatible interactions in Arabidopsis. — Mol. Plant Microbe. Interact. 17: 343–350, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Foyer, C.H., Noctor, G.: Oxygen processing in photosynthesis: regulation and signaling. — New Phytol. 146: 359–388, 2000.

    Article  CAS  Google Scholar 

  • Gill, S.S., Tuteja, N.: Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. — Plant Physiol. Biochem. 48: 909–930, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Guo, Z., Tan, H., Zhu, Z., Lu. S., Zhou, B.: Effect of intermediates on ascorbic acid and oxalate biosynthesis of rice and in relation to its stress resistance. — Plant Physiol. Biochem. 43: 955–962, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Gupta, M., Sharma, P., Sarin, N.B., Sinha, A.K.: Differential response of arsenic stress in two species of Brassica juncea L. — Chemosphere 74: 1201–1208, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Halimeh, R., Mahlagh, G., Maryam, P., Pazoki, A.: Effect of drought interactions with ascorbate on some biochemical parameters and antioxidant enzymes activities in Dracocephalum moldavica L. — Middle-East J. sci. Res. 13: 522–531, 2013.

    Google Scholar 

  • Hameed, A., Goher, M., Iqbal, N.: Drought induced programmed cell death and associated changes in antioxidants, proteases, and lipid peroxidation in wheat leaves. — Biol. Plant. 57: 370–374, 2013.

    Article  CAS  Google Scholar 

  • Hasanuzzaman, M., Fujita, M.: Exogenous sodium nitroprusside alleviates arsenic-induced oxidative stress in wheat (Triticum aestivum L.) seedlings by enhancing antioxidant defense and glyoxalase system. — Ecotoxicology 22: 584–596, 2013.

    Article  PubMed  CAS  Google Scholar 

  • Hasanuzzaman, M., Fujita, M.: Selenium pretreatment upregulates the antioxidant defense and methylglyoxal detoxification system and confers enhanced tolerance to drought stress in rapeseed seedlings. — Biol. Trace Element Res. 143: 1758–1776, 2011.

    Article  CAS  Google Scholar 

  • Hasanuzzaman, M., Hossain, M.A., Fujita, M.: Exogenous selenium pretreatment protects rapeseed seedlings from cadmium-induced oxidative stress by upregulating the antioxidant defense and methylglyoxal detoxification systems. — Biol. Trace Element Res. 149: 248–261, 2012b.

    Article  CAS  Google Scholar 

  • Hasanuzzaman, M., Hossain, M.A., Fujita, M.: Nitric oxide modulates antioxidant defense and the methylglyoxal detoxification system and reduces salinity-induced damage of wheat seedlings. — Plant Biotechnol. Rep. 5: 353–365, 2011a.

    Article  Google Scholar 

  • Hasanuzzaman, M., Hossain, M.A., Fujita. M.: Seleniuminduced up-regulation of the antioxidant defense and methylglyoxal detoxification system reduces salinityinduced damage in rapeseed seedlings. — Biol. Trace Element Res. 143: 1704–1721, 2011b.

    Article  CAS  Google Scholar 

  • Hasanuzzaman, M., Hossain, M.A., Teixeira da Silva, J.A., Fujita, M.: Plant response and tolerance to abiotic oxidative stress: antioxidant defense is a key factor. — In: Venkateswarlu, B., Shanker, S.C., Maheswari, M. (ed.): Crop Stress and its Management: Perspectives and Strategies. Pp. 261–315. Springer, New York 2012a.

    Google Scholar 

  • Hasanuzzaman, M., Nahar, K., Alam, M.M., Fujita, M.: Exogenous nitric oxide alleviates high temperature induced oxidative stress in wheat (Triticum aestivum) seedlings by modulating the antioxidant defense and glyoxalase system. — Aust. J. Crop Sci. 6: 1314–1323, 2012c.

    CAS  Google Scholar 

  • Hasanuzzaman, M., Nahar, K., Gil, S.S., Fujita, M.: Drought stress responses in plants, oxidative stress and antioxidant defense. — In: Gill, S.S., Tuteja, N. (ed.): Climate Change and Plant Abiotic Stress Tolerance. Pp. 209–249. Wiley, Weinheim 2014.

    Google Scholar 

  • Heath, R.L., Packer, L.: Photoperoxidation in isolated chloroplast. I. Kinetics and stoichiometry of fatty acid peroxidation. — Arch. Biochem. Biophys. 125: 189–198, 1968.

    Article  PubMed  CAS  Google Scholar 

  • Hoque, M.A., Banu, M.N., Nakamura, Y., Shimoishi, Y., Murata, Y.: Proline and glycinebetaine enhance antioxidant defense and methylglyoxal detoxification systems and reduce NaCl-induced damage in cultured tobacco cells. — J. Plant Physiol. 165: 813–824, 2007.

    Article  PubMed  Google Scholar 

  • Hossain, M.A., Hasanuzzaman, M., Fujita, M.: Up-regulation of antioxidant and glyoxalase systems by exogenous glycinebetaine and proline in mung bean confer tolerance to cadmium stress. — Physiol. mol. Biol. Plants 16: 259–272, 2010.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hossain, M.A., Nakano, Y., Asada, K.: Monodehydroascorbate reductase in spinach chloroplasts and its participation in the regeneration of ascorbate for scavenging hydrogen peroxide. — Plant Cell Physiol. 25: 385–395, 1984.

    CAS  Google Scholar 

  • Hossain, M.Z., Hossain, M.D., Fujita, M.: Induction of pumpkin glutathione S-transferase by different stresses and its possible mechanisms. — Biol. Plant. 50: 210–218, 2006.

    Article  CAS  Google Scholar 

  • Huang, C., He, W., Guo, J., Chang, X., Su, P., Zhang, L.: Increased sensitivity to salt stress in ascorbate-deficient Arabidopsis mutant. — J. exp. Bot. 56: 3041–3049, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Hussain, M., Malik, M.A., Farooq, M., Khan, M.B., Akram, M., Saleem, M.F.: Exogenous glycinebetaine and salicylic acid application improves water relations, allometry and quality of hybrid sunflower under water deficit conditions. — J. Agron. Crop Sci. 195: 98–109, 2009.

    Article  CAS  Google Scholar 

  • Jaleel, C.A., Manivannan, P., Wahid, A., Farooq, M., Somasundaram, R., Panneerselvam, R.: Drought stress in plants: a review on morphological characteristics and pigments composition. — Int. J. agr. Biol. 11: 100–105, 2009.

    Google Scholar 

  • Kabiri, R., Farahbakhsh, H., Nasibi, F.: Salicylic acid ameliorates the effects of oxidative stress induced by water deficit in hydroponic culture of Nigella sativa. — Amer. euras. J. agr. Environ. Sci. 12: 1420–25, 2012.

    CAS  Google Scholar 

  • Kadioglu, A., Saruhan, N., Sağlam, A., Terzi, R., Acet, T.: Exogenous salicylic acid alleviates effects of long term drought stress and delays leaf rolling by inducing antioxidant system. — Plant Growth Regul. 64: 27–37, 2011.

    Article  CAS  Google Scholar 

  • Kahmen, A., Perner, J., Buchmann, N.: Diversity-dependent productivity in semi-natural grasslands following climate perturbations. — Funct. Ecol. 19: 594–601, 2005.

    Article  Google Scholar 

  • Khan, T.A., Mazid, M., Mohammad, F.: A review of ascorbic acid potentialities against oxidative stress induced in plants. — J. Agrobiol. 28: 97–111, 2011.

    Google Scholar 

  • Lindahl, M., Yang, D.H., Andersson, B.: Regulatory proteolysis of the major light-harvesting chlorophyll a/b protein of photosystem II by light-induced membrane associated enzymic system. — Eur. J. Biochem. 213: 503–509, 1995.

    Article  Google Scholar 

  • Liu, F., Jensen, C.R., Andersen, M.N.: Drought stress effect on carbohydrate concentration in soybean leaves and pods during early reproductive development: its implication in altering pod set. — Field Crops Res. 86: 1–13, 2004.

    Article  CAS  Google Scholar 

  • Manivannan, P., Jaleel, C.A., Sankar, B., Kishorekumar, A., Somasundaram, R., Lakshmanan, G.M.A., Panneerselvam, R.: Growth, biochemical modifications and proline metabolism in Helianthus annuus L. as induced by drought stress. — Cell. Surf. B. 59: 141–149, 2007.

    Article  CAS  Google Scholar 

  • Mittova, V., Theodoulou, F.L., Kiddle, G., Gómez, L., Volokita, M., Tal, M., Foyer, C.H., Guy, M.: Coordinate induction of glutathione biosynthesis and glutathione-metabolizing enzymes is correlated with salt tolerance in tomato. — FEBS Lett. 554: 417–421, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Moaveni, P.: Effect of water deficit stress on some physiological traits of wheat (Triticum aestivum). — Agr. sci. Res. J. 1: 64–68, 2011.

    Google Scholar 

  • Molassiotis, A., Sotiropoulos, T., Tanou, G., Diamantidis, G., Therios, I.: Boron induced oxidative damage and antioxidant and nucleolytic responses in shoot tips culture of the apple rootstock EM9 (Malus domestica Borkh). — Environ. exp. Bot. 56: 54–62, 2006.

    Article  CAS  Google Scholar 

  • Mullineaux, P.M., Rausch, T.: Glutathione, photosynthesis and the redox regulation of stress-responsive gene expression. — Photosynth. Res. 86: 459–474, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Nakano, Y., Asada, K.: Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. — Plant Cell Physiol. 22: 867–880, 1981.

    CAS  Google Scholar 

  • Navari-Izzo, F., Meneguzzo, S., Loggini, B., Vazzana, C., Sgherri, C.L.M.: The role of the glutathione system during dehydration of Boea hygroscopica. — Physiol. Plant. 99: 23–30, 1997.

    Article  CAS  Google Scholar 

  • Noctor, G., Foyer, C.: Ascorbate and glutathione: keeping active oxygen under control. — Annu. Rev. Plant Physiol. Plant mol. Biol. 49: 249–279, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Noctor, G., Veljovic-Jovanovic, S., Driscoll, S., Novitskaya, L., Foyer, C.: Drought and oxidative load in the leaves of C3 plants: a predominant role for photorespiration? — Ann. Bot. 89: 841–850, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Paradiso, A., Berardino, R., De Pinto, M., Di Toppi, L.S., Storelli, F.T., De Gara, L.: Increase in ascorbate-glutathione metabolism as local and precocious systemic responses induced by cadmium in durum wheat plants. — Plant Cell Physiol. 49: 362–374, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Pattanagul, W.: Exogenous abscisic acid enhances sugar accumulation in rice (Oriza sativa L.) under drought stress. — Asian J. Plant Sci. 10: 212–219, 2011.

    Article  CAS  Google Scholar 

  • Pendall, E., Bridgham, S., Hanson, P.J., Hungate, B., Kicklighter, D.W., Johnson. D.W., Law. B.E., Luo. Y.Q., Megonigal. J.P., Olsrud. M., Ryan, M.G., Wan, S.Q.: Below-ground process responses to elevated CO2 and temperature: a discussion of observations, measurement methods, and models. — New Phytol. 162: 311–322, 2004.

    Article  Google Scholar 

  • Pennisi, E.: The blue revolution, drop by drop, gene by gene. — Science 32: 171–173, 2008.

    Article  Google Scholar 

  • Pignocchi, C., Foyer, C.: Apoplastic ascorbate metabolism and its role in the regulation of cell signaling. — Curr. Opin. Plant Biol. 6: 379–389, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Principato, G.B., Rosi, G., Talesa, V., Govannini, E., Uolila. L.: Purification and characterization of two forms of glyoxalase II from rat liver and brain of Wistar rats. — Biochem. biophys. Acta 911: 349–355, 1987.

    PubMed  CAS  Google Scholar 

  • Razaji, A., Asli, D.E., Farzanian, M.: The effects of seed priming with ascorbic acid on drought tolerance and some morphological and physiological characteristics of safflower (Carthamus tinctorius L.). — Ann. biol. Res. 3: 3984–3989, 2012.

    CAS  Google Scholar 

  • Sakhabutdinova, A.R., Fatkhutdinova, D.R., Bezrukova, M.V., Shakirova, F.M.: Salicylic acid prevents the damaging action of stress factors on wheat plants. — Bulg. J. Plant Physiol. Special Issue 2003: 314–319, 2003.

    Google Scholar 

  • Sánchez-Rodríguez, E., Rubio-Wilhelmi, M.D.M., Blasco, B., Leyva, R., Romero, L., Ruiz, J.M.: Antioxidant response resides in the shoot in reciprocal grafts of drought-tolerant and drought-sensitive cultivars in tomato under water stress. — Plant Sci. 188–189: 89–96, 2012.

    Article  PubMed  Google Scholar 

  • Shalata, A., Neumann, P.M.: Exogenous ascorbic acid (Vitamin C) increases resistance to salt stress and reduces lipid peroxidation. — J. exp. Bot. 52: 2207–2211, 2001.

    PubMed  CAS  Google Scholar 

  • Sharma, P., Dubey, R.S.: Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings. — Plant Growth Regul. 46: 209–221, 2005.

    Article  CAS  Google Scholar 

  • Singla-Pareek, S.L., Reddy, M.K., Sopory, S.K.: Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance. — Proc. nat. Acad. Sci. USA 100: 14672–14677, 2003.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Singla-Pareek, S.L., Yadav, S.K., Pareek, A., Reddy, M.K., Sopory, S.K.: Transgenic tobacco overexpressing glyoxalase pathway enzymes grow and set viable seeds in zinc-spiked soils. — Plant Physiol. 140: 613–623, 2006.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Singla-Pareek, S.L., Yadav, S.K., Pareek, A., Reddy, M.K., Sopory, S.K.: Enhancing salt tolerance in a crop plant by overexpression of glyoxalase II. — Transgen Res. 17: 171–180, 2008.

    Article  CAS  Google Scholar 

  • Smirnoff, N.: The function and metabolism of ascorbic acid in plants. — Ann. Bot. 78: 661–669, 1996.

    Article  CAS  Google Scholar 

  • Taiz, L., Zeiger, E.: Plant Physiology. 4th Ed. — Sinaur, Sunderland 2006.

    Google Scholar 

  • Vander, J.D.L.: Glyoxalase II: molecular characteristics, kinetics and mechanism. — Biochem. Soc. Trans. 21: 522–527, 1993.

    Google Scholar 

  • Wang, H., Liu, J., Wu, L.: Methylglyoxal-induced mitochondrial dysfunction in vascular smooth muscle cells. — Biochem. Pharmacol. 77: 1709–1716, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Wu, G., Wei, Z.K., Shao, H.B.: The mutual responses of higher plants to environment: physiological and microbiological aspects. — Biointerfaces 59:113–119, 2007.

    Article  CAS  Google Scholar 

  • Yadav, S.K., Singla-Pareek, S.L., Ray, M., Reddy, M.K., Sopory, S.K.: Methylglyoxal levels in plants under salinity stress are dependent on glyoxalase I and glutathione. — Biochem. biophys. Res. Commun. 337: 61–67, 2005a.

    Article  PubMed  CAS  Google Scholar 

  • Yadav, S.K., Singla-Pareek, S.L., Ray, M., Reddy, M.K., Sopory, S.K.: Transgenic tobacco plants overexpressing glyoxalase enzymes resist an increase in methylglyoxal and maintain higher reduced glutathione levels under salinity stress. — FEBS Lett. 579: 6265–6271, 2005b.

    Article  PubMed  CAS  Google Scholar 

  • Yang, J., Zhang, N., Ma, C., Qu, Y., Si, H., Wang, D.: Prediction and verification of microRNAs related to proline accumulation under drought stress in potato. — Comput. Biol. Chem. 46: 48–54, 2013.

    Article  PubMed  CAS  Google Scholar 

  • Yang, S.L., Lan, S.S., Ming, G.: Hydrogen peroxide-induced proline and metabolic pathway of its accumulation in maize seedlings. — J. Plant Physiol. 166: 1694–1699, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Yu, C.W., Murphy, T.M., Lin, C.H.: Hydrogen peroxideinduces chilling tolerance in mung beans mediated through ABA-independent glutathione accumulation. — Funct. Plant Biol. 30: 955–963, 2003.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Fujita.

Additional information

Acknowledgements: The first author is grateful to the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan for financial supports. We acknowledge Dr. Motiar Rohman, the Bangladesh Agricultural Research Institute for his help during enzyme assays.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alam, M.M., Nahar, K., Hasanuzzaman, M. et al. Alleviation of osmotic stress in Brassica napus, B. campestris, and B. juncea by ascorbic acid application. Biol Plant 58, 697–708 (2014). https://doi.org/10.1007/s10535-014-0447-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-014-0447-0

Additional key words

Navigation