Skip to main content
Log in

Transport of mRNA molecules coding NAC domain protein in grafted pear and transgenic tobacco

  • Original Papers
  • Published:
Biologia Plantarum

Abstract

Grafting is an important cultivation method and recent research on the mechanism of interactions between rootstock nad scion is focused on the long-distance transport of mRNA and small RNAs in the phloem. Among these transportable molecules, NACP gene coding NAM, ATAF1/2, CUC2 (NAC) domain protein might be involved in apical meristem development. Here, we report the transport of NACP mRNA between Chinese pear (Pyrus bretschneideri) cv. Yali (scion) and the wild Pyrus betulaefolia Bunge (rootstock). Our results indicated that NACP mRNA can be transported in both directions from the 3rd to 10th day after micro-grafting. It can also be transported to the shoot apex 30 to 70 cm away from graft-union in 2-year-old grafted trees. For further investigation, transgenic tobaccos with 35S: P. betulaefolia-NACP construct were grafted on wild-type tobaccos (Nicotiana tabacum L. cv. Samsun). The sustainable transport of Pyrus-NACP mRNA through the graft-union occurred from the 15th day after grafting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CAPS:

cleaved amplified polymorphic sequences

GAI:

gibberellic acid insensitive

ISH:

in situ hybridization

NACP:

NAM,ATAF1/2,CUC2 domain protein

NCAP:

non-cell autonomous pathway

RT-PCR:

reverse trascriptase — polymerase chain reaction

References

  • Aida, M., Ishida, T., Fukaki, H., Fujisawa, H., Tasaka, M.: Genes involved in organ separation in Arabidopsis: an analysis of the cup shaped cotyledon mutant. — Plant Cell 9: 841–857, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Banerjee, A.K., Chatterjee, M., Yu Y., Suh, S.G., Wa M., Hannapel, D.J.: Dynamics of a mobile RNA of potato involved in a long distance signalling pathway. — Plant Cell 18: 3443–3457, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Banerjee, A.K., Lin, T., Hannapel, D.J.: Untranslated regions of a mobile transcript mediate RNA metabolism. — Plant Physiol. 151: 1831–1843, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Chang, S., Puryear, J., Cairney, J.: A simple and efficient method for isolating RNA from pine trees. — Plant mol. Biol. Rep. 11: 113–116, 1993.

    Article  CAS  Google Scholar 

  • Clark, S.E.: Cell signalling at the shoot meristem. — Natur. Rev. mol. Cell Biol. 2: 276–284 2001.

    Article  CAS  Google Scholar 

  • Gómez, G., Torres, H., Pallás, V.: Identification of tanslocatable RNA-binding phloem proteins from melon, potential components of the long-distance RNA transport system. — Plant J. 41: 107–116, 2005.

    Article  PubMed  Google Scholar 

  • Goodenough, D.A., Goliger, J.A., Paul, D.L.: Connexins, connexons, and intercellular communication. — Annu. Rev. Biochem. 65: 475–502, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Gurdon, J.B., Dyson, S., Johnson, D.: Cells’ perception of position in a concentration gradient. — Cell 95: 159–162, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Ham, B.K., Brandom, J.L., Xoconostle-Cázares, B., Ringgold, V., Lough, T.J.: A polypyrimidine tract binding protein, pumpkin RBP50, forms the basis of a phloem-mobile ribonucleoprotein complex. — Plant Cell 21: 197–215, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Haywood, V., Yu, T.S., Huang, N.C., Lucas, W.J.: Phloem long distance trafficking of gibberellic scid-insensitive RNA regulates leaf development. — Plant J. 42: 49–68, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Huang, N.C., Yu, T.S.: The sequence of Arabidopsis GA sufficient for RNA long-distance trafficking. — Plant J. 59: 921–929, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Jensen, P.J., Rytter, J., Detwiler, E.A., Travis, J.W., McNellis, T.W.: Rootstock effects on gene expression patterns in apple tree scions. — Plant mol. Biol. 493: 493–511, 2003.

    Article  Google Scholar 

  • Jensen, P.J., Makalowska, I., Altman, N., Fazio, G., Praul, C., Naximova, S.N., Crassweller, R.M., Travis, J.W., McNellis, T.W.: Rootstock regulated gene expression patterns in apple tree scion. — Tree Genet. Genomes 6: 57–72, 2010.

    Article  Google Scholar 

  • Kamboj, J.S., Blake, P.S., Quinlan, J.D., Baker, D.A.: Identification and quantitation of GC-MS of zeatin nad zeatin riboside in xylem sap from rootstock and scion of grafted apple trees. — Plant Growth Regul. 28: 199–205, 1999a.

    Article  CAS  Google Scholar 

  • Kamboj, J.S., Browning, G., Blake, P.S., Quinlan, J.D., Baker, D.A.: GC-MS-SIM analysis of abscisic acid and indole-3-acetic acid in shoot bark of apple rootstocks. — Plant Growth Regul. 28: 21–27, 1999b.

    Article  CAS  Google Scholar 

  • Kanehira, A., Yamada, K., Iwaya, T., Tsuwamoto, R., Kasai, A., Nakazono, M., Harada, T.: Apple phloem cells contain some mRNAs transported over long distances. — Tree Genet. Genomes 6: 635–642, 2009.

    Article  Google Scholar 

  • Kim, M., Canio, W., Kessler, S., Shinha, N.: Developmental changes due to long-distance movement of a homeobox fusion transcript in tomato. — Science 293: 287–289, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Kragler, F., Yoo, B.C., Lucas, W.J.: RNA as a long-distance information macromolecule in plants. — Mol. Cell Biol. 2: 849–856, 2001.

    Google Scholar 

  • Kudo, H., Harada, T.: A graft-transmissible RNA from tomato rootstock changes leaf morphology of potato scion. — HortScience 42: 225–226, 2007.

    CAS  Google Scholar 

  • Lucas, W.J., Ding, B., Van der Schoot, C.: Plasmodesmata nad the supracellular nature of plants. — New Phytol. 125: 435–476, 1993.

    Article  Google Scholar 

  • Lucas, W.J.: Plasmodesmata: intercellular channels for macromolecular transport in plants. — Curr. Opin. Cell Biol. 7: 673–680, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Mallory, C., Ely, L., Smith, T.H., Marathe, R., Anandalakshmi, R., Fagard, M., Vaucheret, H., Pruss, G., Bowman, L. Vance, V.B.: HC-Pro suppression of transgene silencing eliminates the small RNAs but not transgene methylation or the mobile signal. — Plant Cell 13: 571–583, 2001.

    PubMed  CAS  Google Scholar 

  • Murashige, T., Skoog, F.: A revised medium for rapid growth and bioassays with tobacco tissue cultures. — Plant Physiol. 15: 473–497, 1962.

    Article  CAS  Google Scholar 

  • Ruiz-Medrano, R., Xoconostle-Cázares, B., Lucas, W.J.: Phloem and long-distance transport of CmNACP mRNA: implications for supracellular regulation in plants. — Development 126: 4405–4419, 1999.

    PubMed  CAS  Google Scholar 

  • Sablowski, R.W., Meyerowitz, E.M.: A homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA. — Cell 92: 93–103, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Schmitt, B., Stadler, R., Sauer, N.: Immunolocalization of Solanaceous SUT1 proteins in companion cells and xylem parenchyma: new perspectives for phloem loading nad transport. — Plant Physiol. 148: 187–199, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Smaka, A., Li, X.Y., Heikelt, C., Welander, M., Zhu, L.H.: Effects of transgenic rootstocks on growth and development of non-transgenic scion cultivars in apple. — Transgenic Res. 19: 933–948, 2010.

    Article  Google Scholar 

  • Souer, E., Houwelingen, V.A., Kloos, D., Mol, J., Koes, R.: The no apical meristem gene of petunia is required for pattern formation in embryos and flowers and is expressed at meristem boundaries. — Cell 85: 159–170, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Soumelidou, K., Morris, D.A., Battey, N.H., Barnett, J.R., John, P.: Auxin transport capacity in relation to the dwarfing effect of apple root-stocks. — J. hort. Sci. 69: 719–725, 1994.

    CAS  Google Scholar 

  • Xoconostle-Cázares, B., Xiang, Y., Ruiz-Medrano, R., Wang, H.L., Monzer, J., Yoo, B.C., McFarland, K.C., Franceschi, V.R., Lucas, W.J.: Plant paralog to viral movement protein that potentiates transport of mRNA into the phloem. — Science 283: 94–98, 1999.

    Article  PubMed  Google Scholar 

  • Xu, H.Y., Zhang, W.N., Li, M.F., Harada, T., Han, Z.H., Li, T.Z.: Gibberellic acid insensitive mRNA transport in both directions between stock and scion in Malus. — Tree Genet. Genomes 6: 1013–1019, 2010.

    Article  Google Scholar 

  • Zhang, W.N., Gong, L., Ma, C., Xu, H.Y., Hu, J.F., Li, T.Z.: Gibberellic acid insensitive mRNA transport in Pyrus. — Plant mol. Biol. Rep. 30: 614–623, 2012.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Z. Li.

Additional information

Acknowledgments: This work was supported by the Doctoral Program Special Fund of Ministry of Education of China (201000008110036), National Natural Science Foundation of China (30871697) and Beijing Natural Science Foundation (6102017).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, W.N., Duan, X.W., Ma, C. et al. Transport of mRNA molecules coding NAC domain protein in grafted pear and transgenic tobacco. Biol Plant 57, 224–230 (2013). https://doi.org/10.1007/s10535-012-0293-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-012-0293-x

Additional key words

Navigation