Skip to main content
Log in

Anthocyanin accumulation and expression analysis of biosynthesis-related genes during chili pepper fruit development

  • Published:
Biologia Plantarum

Abstract

Chili pepper (Capsicum annuum L.) cv. Árbol and Uvilla fruits differing in anthocyanin contents were analyzed to characterize the accumulation patterns. The maximum accumulation of the aglycon delphinidin occurred 20 days postanthesis (DPA) with higher content in Uvilla than in Árbol fruits. Regarding the cDNA library, 9 186 cDNA clones were selected. The clones with high homology to genes concerning anthocyanin biosynthesis, such as encoding chalcone synthase (CHS), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), flavonoid 3′,5′-hydroxylase (F3′5′H), dihydroflavonol 4-reductase (DFR), anthocyanidin synthase (ANS), UDP Glc-flavonoid 3-O-gluco-syl transferase (UFGT), and also those possibly involved in anthocyanin transport into the vacuoles, an anthocyanin permease (ANP) and a glutathione S-transferase (GST) were used for gene expression analysis. In general, the expression of all investigated genes was developmentally regulated in both Árbol and Uvilla. CHS and CHI transcripts were expressed at the maximal level at 10 DPA, and then consistently declined throughout fruit development. F3′5′H, DFR, UFGT and GST expression exhibited a positive correlation with anthocyanin accumulation, and the highest transcript levels were detected prior to or by the time of maximum anthocyanin accumulation, depending on the chili pepper type. Pericarp fruit tissues from cv. Tampiqueño 74, an anthocyanin non-accumulator, also showed CHS, CHI, F3H, ANS and ANP expression at some developmental stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ANP:

anthocyanin permease

ANS:

anthocyanidin synthase

CHI:

chalcone isomerase

CHS:

chalcone synthase

DFR:

dihydroflavonol 4-reductase

DPA:

days post anthesis

F3H:

flavanone 3-hydroxylase

F3′5′H:

flavonoid 3′,5′-hydroxylase

Glc:

glucose

GST:

glutathione S-transferase

UDP:

uridindiphosphate

UFGT:

UDP Glc-flavonoid 3-O-glucosyl transferase

References

  • Ahmed, N., Maekawa, M., Noda, K.: Anthocyanin accumulation and expression pattern of anthcyanin biosynthesis gene in developing wheat coleoptiles. — Biol Plant. 53: 223–228, 2009.

    Article  CAS  Google Scholar 

  • Ben Chaim, A., Borovsky, Y., De Jong, W., Paran, I.: Linkage of the A locus for the presence of anthocyanin and fs10.1 a major fruit-shape QTL in pepper. — Theor. appl. Genet. 106: 889–894, 2003.

    Google Scholar 

  • Borovsky, Y., Oren-Shamir, M., Ovadia, R., De Jong, W., Paran, I.: The A locus that controls anthocyanin accumulation in pepper encodes a MYB transcription factor homologous to Anthocyanin2 of Petunia. — Theor. appl. Genet. 109: 23–29, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Britsch, L., Dedio, J., Saedler, H., Forkmann, G.: Molecular characterization of flavanone 3β-hydroxylases. Consensus sequence, comparison with related enzymes and the role of conserved histidine residues. — Eur. J. Biochem. 217: 745–754, 1993.

    Article  PubMed  CAS  Google Scholar 

  • Castellarin, S.D., Di Gaspero, G., Marconi, R., Nonis, A., Peterlunger, E., Paillard, S., Adam-Blondon, A.F., Testolin, R.: Colour variation in red grapevines (Vitis vinifera L.): genomic organisation, expression of flavonoid 3’- hydroxylase, flavonoid 3′,5′-hydroxylase genes and related metabolite profiling of red cyanidin-/blue delphinidin-based anthocyanins in berry skin. — BMC Genomics 7: 1–12, 2006.

    Article  Google Scholar 

  • Conn, S., Curtin, C., Bézier, A., Franco, C., Zhang, W.: Purification, molecular cloning, and characterization of glutathione S-transferases (GSTs) from pigmented Vitis vinifera L. cell suspension cultures as putative anthocyanin transport proteins. — J. exp. Bot. 59: 3621–3634, 2008.

    Article  PubMed  CAS  Google Scholar 

  • De Jong, W.S., Eannetta, N.T., De Jong, D.M., Bodis, M.: Candidate gene analysis of anthocyanin pigmentation loci in the Solanaceae. — Theor. appl. Genet. 108: 423–432, 2004.

    Article  PubMed  Google Scholar 

  • Deluc, L., Bogs, J., Walker, A.R., Ferrier, T., Decendit, A., Merillon, J.M., Robinson, S.P., Barrieu, F.: The transcription factor VvMYB5b contributes to the regulation of anthocyanin and proanthocyanidin biosynthesis in developing grape berries. — Plant Physiol. 147: 2041–2053, 2008.

    Article  PubMed  CAS  Google Scholar 

  • De Vetten, N., Quattrocchio, F., Mol, J., Koes, R.: The an11 locus controlling flower pigmentation in petunia encodes a novel WD-repeat protein conserved in yeast, plants, and animals. — Genes Dev. 11: 1422–1434, 1997.

    Article  PubMed  Google Scholar 

  • Espley, R.V., Hellens, R.P., Putterill, J., Stevenson, D.E., Kutty- Amma, S., Allan, A.C.: Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. — Plant J. 49: 414–427, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Griesser, M., Hoffmann, T., Bellido, M.L., Rosati, C., Fink, B., Kurtzer, R., Aharoni, A., Muñoz-Blanco, J., Schwab, W.: Redirection of flavonoid biosynthesis through the downregulation of an anthocyanidin glucosyltransferase in ripening strawberry fruit. — Plant Physiol. 146: 1528–1539, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Grotewold, E.: The genetics and biochemistry of floral pigments. — Annu. Rev. Plant Biol. 57: 761–780, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Holton, T.A., Cornish, E.: Genetics and biochemistry of anthocyanin biosynthesis. — Plant Cell 7: 1071–1083, 1995.

    PubMed  CAS  Google Scholar 

  • Jaakola, L., Määttä, K., Pirttilä, A.M., Törrönenm, R., Kärenlampi, S., Hohtola, A.: Expression of genes involved in anthocyanin biosynthesis in relation to anthocyanin, proanthocyanidin, and flavonol levels during bilberry fruit development. — Plant Physiol. 130: 729–739, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Jez, J.M., Bowman, M.E., Dixon, R.A., Noel, J.P.: Structure and mechanism of the evolutionarily unique plant enzyme chalcone isomerase. — Nat. Struct. Biol. 7: 786–791, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Kitamura, S., Shikazono, N., Tanaka, A.: TRANSPARENT TESTA 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis. — Plant J. 37: 104–114, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Lamy, S., Lafleur, R., Bédard, V., Moghrabi, A., Barrette, S., Gingras, D., Béliveau, R.: Anthocyanidins inhibit migration of glioblastoma cells: Structure-activity relationship and involvement of the plasminolytic system. — J. cell. Biochem. 100: 100–111, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Lightbourn, G.J., Griesbach, R.J., Novotny, J.A., Clevidence, B.A., Rao, D.D., Stommel, J.R.: Effects of anthocyanin and carotenoid combinations on foliage and immature fruit color of Capsicum annuum L. — J. Hered. 99: 105–111, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Lo Piero, A.R., Puglisi, I., Rapisarda, P., Petrone, G.: Anthocyanins accumulation and related gene expression in red orange fruit induced by low temperature storage. — J. agr. Food Sci. 53: 9083–9088, 2005.

    Article  Google Scholar 

  • Marin, A., Ferreres, F., Tomás-Barberán, F.A., Gil, M.I.: Characterization and quantitation of antioxidant constituents of sweet pepper (Capsicum annuum L.). — J. agr. Food Chem. 52: 3861–3869, 2004.

    Article  CAS  Google Scholar 

  • Marrs, K.A., Alfenito, M.R., Lloyd, A.M., Walbot, V.: A glutathione S-transferase involved in vacuolar transfer encoded by the maize gene Bronze-2. — Nature 375: 397–400, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Mathews, H., Clendennen, S.K., Caldwell, C.G., Liu, X.L., Connors, K., Matheis, N., Schuster, D.K., Menasco, D.J., Wagoner, W., Lightner, J., Wagner, D.R.: Activation tagging in tomato identifies a transcriptional regulator of anthocyanin biosynthesis, modification, and transport. — Plant Cell 15: 1689–1703, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Morita, Y., Saitoh, M., Hoshino, A., Nitasaka, E., Iida, S.: Isolation of cDNAs for R2R3-MYB, bHLH and WDR transcriptional regulators and identification of c and ca mutations conferring white flowers in the Japanese morning glory. — Plant Cell Physiol. 7: 457–470, 2006.

    Article  Google Scholar 

  • Mueller, L.A., Goodman, C.D., Silady, R.A., Walbot, V.: AN9, a petunia glutathione S-transferase required for anthocyanin sequestration, is a flavonoid-binding protein. — Plant Physiol. 123: 1561–1570, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Nyman, N.A., Kumpulainen, J.T.: Determination of anthocyanidins in berries and red wine by high-performance liquid chromatography. — J. agr. Food Chem. 49: 4183–4187, 2001.

    Article  CAS  Google Scholar 

  • Preston, J., Wheeler, J., Heazlewood, J., Li, S.F., Parish, R.W.: AtMYB32 is required for normal pollen development in Arabidopsis thaliana. — Plant J. 40: 979–995, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Quattrocchio, F., Wing, J.F., Leppen, H., Mol, J., Koes, R.E.: Regulatory genes controlling anthocyanin pigmentation are functionally conserved among plant species and have distinct sets of target genes. — Plant Cell 5: 1497–1512, 1993.

    PubMed  CAS  Google Scholar 

  • Reddy, M.K., Alexander-Lindo, R.L., Nair, M.G.: Relative inhibition of lipid peroxidation, cyclooxygenase enzymes, and human tumor cell proliferation by natural food colors. — J. agr. Food Chem. 53: 9268–9273, 2005.

    Article  CAS  Google Scholar 

  • Reif, H.J., Niesbach, U., Deumling, B., Saedler, H.: Cloning and analysis of two genes for chalcone synthase from Petunia hybrida. — Mol. gen. Genet. 199: 208–215, 1985.

    Article  CAS  Google Scholar 

  • Sadilova, E., Stintzing, F.C., Carle, R.: Anthocyanins, colour and antioxidant properties of eggplant (Solanum melongena L.) and violet pepper (Capsicum annuum L.) peel extracts. — Z. Naturforsch. C 61: 527–535, 2006.

    PubMed  CAS  Google Scholar 

  • Spelt, C., Quattrocchio, F., Mol, J.N., Koes, R.: Anthocyanin1 of petunia encodes a basic helix-loop-helix protein that directly activates transcription of structural anthocyanin genes. — Plant Cell 12: 1619–1632, 2000.

    PubMed  CAS  Google Scholar 

  • Stommel, J.R., Lightbourn, G.J., Winkel, B.S., Griesbach, R.J.: Transcription factor families regulate the anthocyanin biosynthetic pathway in Capsicum annuum. — J. amer. Soc. hort. Sci. 134: 244–251, 2009.

    Google Scholar 

  • Wu, X., Prior, R.L.: Identification and characterization of anthocyanins by high-performance liquid chromatographyelectrospray ionization-tandem mass spectrometry in common foods in the United States: vegetables, nuts and grains. — J. agr. Food Chem. 53: 3101–3113, 1998.

    Article  Google Scholar 

  • Zhang, Q., Su, L.-J., Chen, J.-W., Zeng, X.-Q., Sun, B.-Y., Peng, C.-L.: The antioxidative role of anthocyanins in Arabidopsis under high-irradiance. — Biol. Plant. 56: 97–104, 2012.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Ochoa-Alejo.

Additional information

Acknowledgements: We acknowledge the National Council for Science and Technology (Conacyt; Mexico) for the fellowship to César Aza-González. The authors would like to thank Hamlet Avilés-Arnaut for his assistance to carry out the semi-quantitative expression analyses. This work was partially supported by grants from Fondos Mixtos Guanajuato (projects GTO-04-C02-24 and GTO-2005-C02-50), Conacyt (Project 55264) and SAGARPA (project 11806).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aza-González, C., Herrera-Isidrón, L., Núñez-Palenius, H.G. et al. Anthocyanin accumulation and expression analysis of biosynthesis-related genes during chili pepper fruit development. Biol Plant 57, 49–55 (2013). https://doi.org/10.1007/s10535-012-0265-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-012-0265-1

Additional key words

Navigation