Skip to main content
Log in

Recent advances in plant immunity: recognition, signaling, response, and evolution

  • Review
  • Published:
Biologia Plantarum

Abstract

Innate immune system is employed by plants to defend against phytopathogenic microbes through specific perception of non-self molecules and subsequent initiation of resistance responses. Current researches elucidate that plants mostly rely on cell surface-located pattern recognition receptors (PRRs) and intracellular nucleotide-binding leucine-rich repeat proteins (NB-LRRs) to recognize pathogen-associated molecular patterns (PAMPs) and effector proteins from microbial pathogens, initiating PAMP- and effector-triggered immunity (PTI and ETI), respectively. Some pathogenic bacterial effector proteins are usually secreted into plant cells and play a virulence function by suppressing plant PTI, implying an evolutionary process of plant immunity from PTI to ETI. In the past several years, a great progress has been achieved to reveal fascinating molecular mechanisms underlying the pathogenic recognition, resistance signaling transduction, and plant immunity evolution. Here, we summarized the latest breakthroughs about these topics, and offered an integral understanding of plant molecular immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Adi3:

AvrPto-dependent Pto-interacting protein 3

AGO:

argonaute

ATG:

autophagy-related protein

ATR13:

Arabidopsis thaliana recognized 13

BAK1:

BRI1-associated kinase

BIK1:

Botrytis-induced kinase 1

BRI1:

brassinosteroid intensitive 1

CBL:

calcineurin B-like protein

CEBiP:

chitin elicitor binding protein

CERK1:

chitin elicitor receptor kinase

CDPK:

calcium-dependent protein kinase

DAMP:

damage-associated molecular pattern

EFR:

EF-Tu receptor

EDS1:

enhanced disease susceptibility 1

ETI:

effector-triggered immunity

FLS2:

flagellin sensing 2

FRK1:

flg22-induced receptor-like kinase 1

HGA:

homogalacturonan

HSP90:

heat shock protein 90

KAPP:

kinase-associated protein phosphatase

LRR-RLK:

leucine-rich repeats-receptor-like kinase

MAPK:

mitogen activated protein kinase

MPK:

MAP kinase phosphatase

NB-LRR:

nucleotide-binding leucine-rich repeat proteins

NLS:

nuclear localization signal

NRIP1:

nuclear-receptor-interacting protein 1

OGs:

oligogalacturonides

PAMP:

pathogen-associated molecular pattern

PBS1:

avrPphB susceptible 1

PCD:

programmed cell death

PEPR1:

PEP receptor 1

PP2C:

protein phosphatase 2C

PopP2:

Pseudomonas outer protein P2

PPR:

pattern recognition receptor

PTI:

PAMP-triggered immunity

RAR1:

required for Mla12 resistance protein

RD19:

responsive to dehydration 19

RIN4:

RPM1-interacting protein 4

RIPK:

RIN4-interacting receptor-like protein kinase

RLCK:

receptor-like cytoplasmic kinase

RLF:

receptor like kinase

RLP:

receptor like protein

ROS:

reactive oxygen species

RPG1-b:

resistance to Pseudomonas syringae pv. glycinea 1b

RPM1:

resistance to P. syringae pv. maculicola

RPP13:

Arabidopsis resistance to Peronospora parasitica 13

RPS2:

resistance to Pseudomonas syringae 2

RPS4:

resistance to Pseudomonas syringae 4

RRS1-R:

resistance to Ralstonia solanacerum 1-R

SGT1:

suppressor of the G allele of skp1

T3SEs:

type III secreted effectors

TAO1:

target of AvrB operation 1

WAK1:

wall-associated kinase 1

References

  • Ade, J., Young, B.J., Golstein, C., Innes, R.W.: Indirect activation of a plant nucleotide binding site-leucine-rich repeat protein by a bacterial protease. — Proc. nat. Acad. Sci. USA 104: 2531–2536, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, J.C., Bartels, S., Besteiro, M.A., Shahollari, B., Ulm, R., Peck, S.C.: Arabidopsis MAP Kinase Phosphatase 1 (AtMKP1) negatively regulates MPK6-mediated PAMP responses and resistance against bacteria. — Plant J. 67: 258–268, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Asai, T., Tena, G., Plotnikova, J., Willmann, M.R., Chiu, W.L., Gomez-Gomez L.: MAP kinase signaling cascade in Arabidopsis innate immunity. — Nature 415: 977–983, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Ashfield, T., Bocian, A., Held, D., Henk, A.D.: Genetic and physical localization of the soybean Rpg1-b disease resistance gene reveals a complex locus containing several tightly linked families of NBS-LRR genes. — Mol. Plant Microbe Interact. 16: 817–826, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Axtell, M.J., Staskawicz, B.J.: Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4. — Cell 112: 369–377, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Belkhadir, Y., Nimchuk, Z., Hubert, D.A., Mackey, D., Dangl, J.L.: Arabidopsis RIN4 negatively regulates disease resistance mediated by RPS2 and RPM1 downstream or independent of the NDR1 signal modulator and is not required for the virulence functions of bacterial type III effectors AvrRpt2 or AvrRpm1. — Plant Cell 16: 2822–2835, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Bernoux, M., Timmers, T., Jauneau, A., Brière, C., De Wit, P.J., Marco, Y., Deslandes, L.: RD19, an Arabidopsis cysteine protease required for RRS1-R-mediated resistance, is relocalized to the nucleus by the Ralstonia solanacearum PopP2 effector. — Plant Cell 20: 2252–2264, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Bethke, G., Unthan, T., Uhrig, J.F., Pöschl, Y., Gust, A.A., Scheel, D., Lee, J.: Flg22 regulates the release of an ethylene response factor substrate from MAP kinase 6 in Arabidopsis thaliana via ethylene signaling. — Proc. nat. Acad. Sci. USA 106: 8067–8072, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Botër, M., Amigues, B., Peart, J., Breuer, C., Kadota, Y., Casais, C.: Structural and functional analysis of SGT1 reveals that its interaction with HSP90 is required for the accumulation of Rx, an R protein involved in plant immunity. — Plant Cell 19: 3791–3804, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Boudsocq, M., Willmann, M.R., McCormack, M., Lee, H., Shan, L., He, P., Bush, J., Cheng, S.H., Sheen, J.: Differential innate immune signalling via Ca2+ sensor protein kinases. — Nature 464: 418–422, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Brunner, F., Rosahl, S., Lee, J., Rudd, J.J., Geiler, C., Kauppinen, S., Rasmussen, G., Scheel, D., Nürnberger, T.: Pep-13, a plant defense-inducing pathogen-associated pattern from Phytophthora transglutaminases. — EMBO J. 21: 6681–6688, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Brutus, A., Sicilia, F., Macone, A., Cervone, F., De Lorenzo, G.: A domain swap approach reveals a role of the plant wall-associated kinase 1 (WAK1) as a receptor of oligogalacturonides. — Proc. nat. Acad. Sci. USA 107: 9452–9457, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Burch-Smith, T.M., Schiff, M., Caplan, J.L., Tsao, J., Czymmek, K., Dinesh-Kumar, S.P.: A novel role for the TIR domain in association with pathogen-derived elicitors. — PLoS Biol. 5: e68, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Burgyán, J., Klement, Z.: Early induced selective inhibition of incompatible bacteria in tobacco plants. — Phytopathol. Mediterr. 18: 153–161, 1979.

    Google Scholar 

  • Caplan, J., Padmanabhan, M., Burch-Smith, T.M., Czymmek, K., Dinesh-Kumar, S.P.: Chloroplastic protein NRIP1 mediates innate immune receptor recognition of a viral effector. — Cell 132: 449–462, 2008a.

    Article  PubMed  CAS  Google Scholar 

  • Caplan, J., Padmanabhan, M., Dinesh-Kumar, S.P.: Plant NB-LRR immune receptors: from recognition to transcriptional reprogramming. — Cell Host Microbe 3: 26–35, 2008b.

    Article  CAS  Google Scholar 

  • Chang, J.H., Tai, Y.S., Bernal, A.J., Lavelle, D.T., Staskawicz, B.J., Michelmore, R.W.: Functional analyses of the Pto resistance gene family in tomato and the identification of a minor resistance determinant in a susceptible haplotype. — Mol. Plant Microbe Interact. 15: 281–291, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Chinchilla, D., Zipfel, C., Robatzek, S., Kemmerling, B., Nürnberger, T., Jones, J.D., Felix, G., Boller, T.: A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. — Nature 448: 497–500, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Chisholm, S.T., Coaker, G., Day, B., Staskawicz, B.J.: Host-microbe interactions: shaping the evolution of the plant immune response. — Cell 124: 803–814, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Chu, Z., Yuan, M., Yao, J., Ge, X., Yuan, B., Xu, C.: Promoter mutations of an essential gene for pollen development result in disease resistance in rice. — Genes Dev. 20: 1250–1255, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Chung, E.H, Da Cunha, L., Wu, A.J., Gao, Z., Cherkis, K., Afzal, A.J., Mackey, D., Dangl, J.L.: Specific threonine phosphorylation of a host target by two unrelated type III effectors activates a host innate immune receptor in plants. — Cell Host Microbe 17: 125–136, 2011.

    Article  CAS  Google Scholar 

  • Clay, N.K., Adio, A.M., Denoux, C., Jander, G., Ausubel, F.M.: Glucosinolate metabolites required for an Arabidopsis innate immune response. — Science 323: 95–101, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Dangl, J.L., Jones, J.D.G.: Plant pathogens and integrated defence responses to infection. — Nature 411: 826–833, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Daxberger, A., Nemak, A., Mithofer, A., Fliegmann, J., Ligterink, W., Hirt, H., Ebel, J.: Activation of members of a MAPK module in beta-glucan elicitor mediated non-host resistance of soybean. — Planta 225: 1559–1571, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Denoux, C., Galletti, R., Mammarella, N., Gopalan, S., Werck, D., De Lorenzo, G., Ferrari, S., Ausubel, F.M., Dewdney, J.: Activation of defense response pathways by OGs and Flg22 elicitors in Arabidopsis seedlings. — Mol. Plant 1: 423–445, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Deslandes, L., Olivier, J., Peeters, N., Feng, D.X.: Physical interaction between RRS1-R., a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus. — Proc. nat. Acad. Sci. USA 100: 8024–8029, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Devarenne, T.P., Ekengren, S.K., Pedley, K.F., Martin, G.B.: Adi3 is a Pdk1-interacting AGC kinase that negatively regulates plant cell death. — EMBO J. 25: 255–265, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Ding, X., Richter, T., Chen, M., Fujii, H.: A rice kinase-protein interaction map. — Plant Physiol. 149: 1478–1492, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Dixon, M.S., Jones, D.A., Keddie, J.S., Thomas, C.M., Harrison, K., Jones, J.D.: The tomato Cf-2 disease resistance locus comprises two functional genes encoding leucine-rich repeat proteins. — Cell 84: 451–459, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Dodds, P., Lawrence, G., Catanzariti, A.M., Teh, T.: Direct protein interaction underlies gene-for-gene specificity and co-evolution of the flax L5/L6/L7 resistance genes and flax rust AvrL567 avirulence genes. — Proc. nat. Acad. Sci. USA 103: 8888–8893, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Eitas, T.K., Dangl, J.L.: NB-LRR proteins: pairs, pieces, perception, partners, and pathways. — Curr. Opin. Plant Biol. 13: 472–477, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Eitas, T.K., Nimchuk, Z.L., Dangl, J.L.: Arabidopsis TAO1 is a TIR-NB-LRR protein that contributes to disease resistance induced by the Pseudomonas syringae effector AvrB. — Proc. nat. Acad. Sci. USA 105: 6475–6480, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Ek-Ramos, M.J., Avila, J., Cheng, C., Martin, G.B., Devarenne, T.P.: The T-loop extension of the tomato protein kinase AvrPto-dependent Pto-interacting protein 3: (Adi3) directs nuclear localization for suppression of plant cell death. — J. biol. Chem. 285: 17584–17594, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Erickson, F.L., Holzberg, S., Calderon-Urrea, A., Handley, V., Axtell, M., Corr, C., Baker, B.: The helicase domain of the TMV replicase proteins induces the N-mediated defence response in tobacco. — Plant J. 18: 67–75, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Fahlgren, N., Howell, M.D., Kasschau, K.D., Chapman, E.J., Sullivan, C.M., Cumbie, J.S.: High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. — PLoS ONE, 2: e219, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Felix, G., Boller, T.: Molecular sensing of bacteria in plants. The highly conserved RNA-binding motif RNP-1 of bacterial cold shock proteins is recognized as an elicitor signal in tobacco. — J. biol. Chem. 278: 6201–6208, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Felix, G., Duran, J.D., Volko, S., Boller, T.: Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. — Plant J. 18: 265–276, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Fliegmann, J., Mithofer, A., Wanner, G., Ebel, J.: An ancient enzyme domain hidden in the putative beta-glucan elicitor receptor of soybean may play an active part in the perception of pathogen-associated molecular patterns during broad host resistance. — J. biol. Chem. 279: 1132–1140, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Flor, H.H.: Current status of the gene-for-gene concept. — Annu. Rev. Phytopathol. 9: 275–296, 1971.

    Article  Google Scholar 

  • Galán, J.E., Collmer, A.: Type III secretion machines: bacterial devices for protein delivery into host cells. — Science 284: 1322–1328, 1999.

    Article  PubMed  Google Scholar 

  • Gao, M., Liu, J., Bi, D., Zhang, Z., Cheng, F., Chen, S., Zhang, Y.: MEKK1, MKK1/MKK2 and MPK4 function together in a mitogen-activated protein kinase cascade to regulate innate immunity in plants. — Cell Res. 18: 1190–1198, 2008.

    Article  PubMed  CAS  Google Scholar 

  • GarcÍa, A.V., Blanvillain-Baufumé, S., Huibers, R.P., Wiermer, M., Li, G., Gobbato, E., Rietz, S., Parker, J.E.: Balanced nuclear and cytoplasmic activities of EDS1 are required for a complete plant innate immune response. — PLoS Pathog. 6: e1000970, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Gassmann, W., Hinsch, M.E., Staskawicz, B.J.: The Arabidopsis RPS4 bacterial-resistance gene is a member of the TIR-NBS-LRR family of disease-resistance genes. — Plant J. 20: 265–277, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Göhre, V., Spallek, T., Häweker, H., Mersmann, S., Mentzel, T., Boller, T.: Plant pattern recognition receptor FLS2 is directed for degradation by the bacterial ubiquitin ligase AvrPtoB. — Curr. Biol. 18: 1824–1832, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Gómez-Gómez, L., Baue, Z., Boller, T.: Both the extracellular leucine-rich repeat domain and the kinase activity of FLS2 are required for flagellin binding and signaling in Arabidopsis. — Plant Cell 13: 155–163, 2001.

    Google Scholar 

  • Gómez-Gómez, L., Boller, T.: FLS2: An LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. — Mol. Cell 5: 1003–1011, 2000.

    Article  PubMed  Google Scholar 

  • Gómez-Gómez, L., Felix, G., Boller, T.: A single locus determines sensitivity to bacterial flagellin in Arabidopsis thaliana. — Plant J. 18: 277–284, 1999.

    Article  PubMed  Google Scholar 

  • Guo, M., Tian, F., Wamboldt, Y., Alfano, J.R.: The majority of the type III effector inventory of Pseudomonas syringae pv. tomato DC3000 can suppress plant immunity. — Mol. Plant Microbe Interact. 22: 1069–1080, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Hanania, U., Avni, A.: High-affinity binding site for ethylene-inducing xylanase elicitor on Nicotiana tabacum membranes. — Plant J. 12: 113–120, 1997.

    Article  CAS  Google Scholar 

  • Hatsugai, N., Iwasaki, S., Tamura, K., Kondo, M.: A novel membrane fusion-mediated plant immunity against bacterial pathogens. — Genes Dev. 23: 2496–2506, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Hatsugai, N., Kuroyanagi, M., Yamada, K., Meshi, T., Tsuda, S., Kondo, M.: A plant vacuolar protease, VPE, mediates virus-induced hypersensitive cell death. — Science 305: 855–858, 2004.

    Article  PubMed  CAS  Google Scholar 

  • He, P., Shan, L., Lin, N.C., Martin, G.B., Kemmerling, B., Nürnberger, T., Sheen, J.: Specific bacterial suppressors of MAMP signaling upstream of MAPKKK in Arabidopsis innate immunity. — Cell 125: 563–575, 2006.

    Article  PubMed  CAS  Google Scholar 

  • He, S.Y., Huang, H.C., Collmer, A.: Pseudomonas syringae pv. syringae harpinPss: a protein that is secreted via the Hrp pathway and elicits the hypersensitive response in plants. — Cell 73: 1255–1266, 1993.

    Article  PubMed  CAS  Google Scholar 

  • Heese, A., Hann, D.R., Gimenez, I.S., Jones, A.M., He, K., Li, J., Schroeder, J.I., Peck, S.C., Rathjen, J.P.: The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. — Proc. nat. Acad. Sci. USA 104: 12217–12222, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Hofius, D., Schultz-Larsen, T., Joensen, J., Tsitsigiannis, D.I., Petersen, N.H.: Autophagic components contribute to hypersensitive cell death in Arabidopsis. — Cell 137: 773–783, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Holt, B., Belkhadir, Y., Dangl, J.L.: Antagonistic control of disease resistance protein stability in the plant immune system. — Science 309: 929–922, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Hubert, D.A., Tornero, P., Belkhadir, Y., Krishna, P., Shirasu, K., Dangl, J.L.: Cytosolic HSP90 associates with and modulates the Arabidopsis RPM1 disease resistance protein. — EMBO J. 22: 569–579, 2003.

    Article  Google Scholar 

  • Hueck, C.J.: Type III protein secretion systems in bacterial pathogens of animals and plants. — Microbiol. Mol. Biol. Rev. 62: 379–433, 1998.

    PubMed  CAS  Google Scholar 

  • Iizasa, E., Mitsutomi, M., Nagano, Y.: Direct binding of a plant LysM receptor-like kinase, LysM RLK1/CERK1, to chitin in vitro. — J. biol. Chem. 285: 2996–3004, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Janjusevic, R., Abramovitch, R.B., Martin, G.B., Stebbins, C.E.: A bacterial inhibitor of host programmed cell death defences is an E3 ubiquitin ligase. — Science 311: 222–226, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Jia, Y., McAdams, S.A., Bryan, G.T., Hershey, H.P., Valent, B.: Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. — EMBO J. 19: 4004–4014, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Jones, D.A., Thomas, C.M., Hammond-Kosack, K.E., Balint-Kurti, P.J., Jones, J.D.: Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. — Science 266: 789–793. 1994

    Article  PubMed  CAS  Google Scholar 

  • Jones, J.D., Dangl, J.L.: The plant immune system. — Nature 444: 323–329, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Kaku, H., Nishizawa, Y., Ishii-Minami, N., Akimoto-Tomiyama, C.: Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. — Proc. nat. Acad. Sci. USA 103: 1086–1091, 2006.

    Article  CAS  Google Scholar 

  • Kim, M.G., Da Cunha, L., McFall, A.J., Belkhadir, Y., Deb Roy, S., Dangl, J.L., Mackey, D.: Two Pseudomonas syringae type III effectors inhibit RIN4-regulated basal defense in Arabidopsis. — Cell 121: 749–759, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Klarzynski, O., Plesse, B., Joubert, J.M., Yvin, J.C., Kopp, M., Kloareg, B., Fritig, B.: Linear beta-1,3 glucans are elicitors of defense responses in tobacco. — Plant Physiol. 124: 1027–1038, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Klement, Z.: Rapid detection of the pathogenicity of phytopathogenic Pseudomonads. — Nature 199: 299–300, 1963.

    Article  PubMed  CAS  Google Scholar 

  • Krol, E., Mentzel T., Chinchilla, D., Boller, T., Felix, G.: Perception of the Arabidopsis danger signal peptide 1 involves the pattern recognition receptor AtPEPR1 and its close homologue AtPEPR2. — J. biol. Chem. 285: 13471–13479, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Kunze, G., Zipfel, C., Robatzek, S., Niehaus, K., Boller, T., Felix, G.: The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. — Plant Cell 16: 3496–3507, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Kurusu, T., Hamada, J., Nokajima, H., Kitagawa, Y.: Regulation of microbe-associated molecular pattern-induced hypersensitive cell death, phytoalexin production, and defense gene expression by calcineurin B-like proteininteracting protein kinases, OsCIPK14/15, in rice cultured cells. — Plant Physiol. 153: 678–692, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Lamb, C., Dixon, R.A.: The oxidative burst in plant disease resistance. — Annu. Rev. Plant Physiol. Plant mol. Biol. 48: 251–275, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Lange, A., Mills, R.E., Lange, C.J., Stewart, M., Devine, S.E., Corbett, A.H.: Classical nuclear localization signals: definition, function, and interaction with importin α. — J. biol. Chem. 282: 5101–5105, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J., Klessig, D.F., Nurnberger, T.: A harpin binding site in tobacco plasma membranes mediates activation of the pathogenesis-related gene HIN1 independent of extracellular calcium but dependent on mitogen-activated protein kinase activity. — Plant Cell 13: 1079–1093, 2001.

    PubMed  CAS  Google Scholar 

  • Lee, S.W., Han, S.W., Sririyanum, M., Park, C.J., Seo, Y.S., Ronald, P.C.: A type I-secreted, sulfated peptide triggers XA21-mediated innate immunity. — Science 326: 850–853, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Leipe, D.D., Koonin, E.V., Aravind, L.: STAND, a class of P-loop NTPases including animal and plant regulators of programmed cell death: multiple, complex domain architectures, unusual phyletic patterns, and evolution by horizontal gene transfer. — J. mol. Biol. 343: 1–28, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Li, Y., Zhang, Q., Zhang, J., Wu, L., Qi, Y., Zhou, J-M.: Identification of microRNAs involved in pathogenassociated molecular pattern-triggered plant innate immunity. — Plant Physiol. 152: 2222–2231, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Ligterink, W., Kroj T., Zur Nieden, U., Hirt, H., Scheel, D.: Receptor-mediated activation of a MAP kinase in pathogen defence of plants. — Science 276: 2054–2057, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Lim, M.T., Kunkel, B.N.: The Pseudomonas syringae type III effector AvrRpt2 promotes virulence independently of RIN4, a predicted virulence target in Arabidopsis thaliana. — Plant J. 40: 790–798, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Lin, N.C., Martin, G.B.: Pto- and Prf-mediated recognition of AvrPto and AvrPtoB restricts the ability of diverse Pseudomonas syringae pathovars to infect tomato. — Mol. Plant Microbe Interact. 20: 806–815, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Liu, J., Elmore, J.M., Lin, Z.J., Coaker, G.: A receptor-like cytoplasmic kinase phosphorylates the host target RIN4, leading to the activation of a plant innate immune receptor. — Cell Host Microbe 17: 137–146, 2011.

    Article  CAS  Google Scholar 

  • Lovrekovich, L., Farkas, G.L.: Induced protection against wildfire disease in tobacco leaves treated with heat-killed bacteria. — Nature 205: 823–824, 1965.

    Article  Google Scholar 

  • Lu, D., Wu, S., Gao, X., Zhang, Y., Shan, L., He, P.: A receptor-like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immunity. — Proc. nat. Acad. Sci. USA 107: 496–501, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Luo, Y., Caldwell, K.S., Wroblewski, T., Wright, M.E., Michelmore, R.W.: Proteolysis of a negative regulator of innate immunity is dependent on resistance genes in tomato and Nicotiana benthamiana and induced by multiple bacterial effectors. — Plant Cell 21: 2458–2472, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Mackey, D., Belkhadir, Y., Alfonso, J.M., Ecker, J.R., Dangl, J.L.: Arabidopsis RIN4 is a target of the type III virulence effector AvrRpt2 and modulates RPS2-mediated resistance. — Cell 112: 379–389, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Mackey, D., Holt, B.F. III., Wiig, A., Dangl, J.L.: RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. — Cell 108: 743–754, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Martin, G.B., Brommonschenkel, S.H., Chunwongse, J., Frary, A., Ganal, M.W., Spivey, R.: Map-based cloning of a protein kinase gene conferring disease resistance in tomato. — Science 262: 1432–1436, 1993.

    Article  PubMed  CAS  Google Scholar 

  • Martin, G.B., Frary A., Wu, T.Y., Brommonschenkel, S., Chunwongse J, Earle, E.D., Tanksley, S.D.: A member of the tomato Pto gene family confers sensitivity to fenthion resulting in rapid cell death. — Plant Cell 6: 1543–52, 1994.

    PubMed  CAS  Google Scholar 

  • Melotto, M., Underwood, W., Jessica, K., Kinya, N., He, S.Y.: Plant stomata function in innate immunity against bacterial invasion. — Cell 126: 969–980, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Mestre, P., Baulcombe, D.C.: Elicitor-mediated oligomerization of the tobacco N disease resistance protein. — Plant Cell 8: 491–501, 2006.

    Google Scholar 

  • Meyer, A., Puhler, A., Niehaus, K.: The lipopolysaccharides of the phytopathogen Xanthomonas campestris pv. campestris induce an oxidative burst reaction in cell cultures of Nicotiana tabacum. — Planta 213: 214–222, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Miya, A., Albert, P., Shinya, T., Desaki, Y., Ichimura, K., Shirasu, K., Narusaka, Y., Kawakami, N., Kaku, H., Shibuya, N.: CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. — Proc. nat. Acad. Sci. USA 104: 19613–19618, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Mucyn, T.S., Clemente, A., Andriotis, V.M., Balmuth, A.L., Oldroyd, G.E., Staskawicz, B.J., Rathjen, J.P.: The tomato NBARC-LRR protein Prf interacts with Pto kinase in vivo to regulate specific plant immunity. — Plant Cell 18: 2792–2806, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Mucyn, T.S., Wu, A.J., Balmuth, A.L., Arasteh, J.M., Rathjen, J.P.: Regulation of tomato Prf by Pto-like protein kinases. — Mol. Plant Microbe Interact. 22: 391–401, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Navarro, L., Dunoyer, P., Jay, F., Arnold, B., Dharmasiri, N., Estelle, M.: A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. — Science 312: 436–439, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Navarro, L., Zipfel, C., Rowland, O., Keller, I., Boller, T., Jones, J.D.: The transcriptional innate immune response to flg22. Interplay and overlap with Avr gene-dependent defence responses and bacterial pathogenesis. — Plant Physiol. 135: 1113–1128, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Newman, M. A., Daniels, M. J., Dow, J.M.: The activity of lipid A and core components of bacterial lipopolysaccharides in the prevention of the hypersensitive response in pepper. — Mol. Plant Microbe Interact. 10: 926–928, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Nomura, H., Komori, T., Kobori, M., Nakahira, Y., Shiina, T.: Evidence for chloroplast control of external Ca2+-induced cytosolic Ca2+ transients and stomatal closure. — Plant J. 53: 988–998, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Ntoukakis, V., Mucyn, T.S., Gimenez-Ibanez, S., Chapman, H.C., Gutierrez, J.R., Balmuth, A.L., Jones, A.M., Rathjen, J.P.: Host inhibition of a bacterial virulence effector triggers immunity to infection. — Science 324: 784–787, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Nürnberger, T., Nennstiel, D., Jabs, T., Sacks, W.R., Hahlbrock, K., Scheel, D.: High affinity binding of a fungal oligopeptide elicitor to parsley plasma membranes triggers multiple defense responses. — Cell 78: 449–460, 1994.

    Article  PubMed  Google Scholar 

  • Ogasawara, Y., Kaya, H., Hiraoka, G., Yumoto, F., Kimura, S., Kadota, Y., Hishinuma, H., Senzaki, E., Yamagoe, S., Nagata, K., Nara, M., Suzuki, K., Tanokura, M., Kuchitsu, K.: Synergistic activation of the Arabidopsis NADPH oxidase AtrbohD by Ca2+ and phosphorylation. — J. biol. Chem. 283: 8885–8892, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Park, C.J., Peng, Y., Chen, X., Dardick, C.: Rice XB15, a protein phosphatase 2C, negatively regulates cell death and XA21-mediated innate immunity. — PLoS Biol. 6: e231, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Pearce, G., Strydom, D., Johnson, S., Ryan, C.A.: A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. — Science 253: 895–897, 1991.

    Article  PubMed  CAS  Google Scholar 

  • Pedley, K.F., Martin, G.B.: Molecular basis of Pto-mediated resistance to bacterial speck disease in tomato. — Annu. Rev. Phytopathol. 41: 215–243, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Petutschnig, E.K., Jones, A.M., Serazetdinova, L., Lipka, U., Lipka, V.: The LysM-RLK CERK1 is a major chitin binding protein in Arabidopsis thaliana and subject to chitin-induced phosphorylation. — J. biol. Chem. 285: 28902–28911, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Qi, Z., Verma, R, Gehring, C., Yamaguchi, Y., Zhao, Y., Ryan, C.A., Berkowitz, G.A.: Ca2+ signaling by plant Arabidopsis thaliana Pep peptides depends on AtPepR1, a receptor with guanylyl cyclase activity, and cGMP-activated Ca2+ channels. — Proc. nat. Acad. Sci. USA 107: 21193–21198, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Qiu, J.L., Fiil, B.K., Petersen, K., Nielsen, H.B., Botanga, C.J., Thorgrimsen, S., Palma, K.: Arabidopsis MAP kinase 4 regulates gene expression through transcription factor release in the nucleus. — EMBO J. 27: 2214–2221, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Rentel, M.C., Leonelli, L., Dahlbeck, D., Zhao, B., Staskawicz, B.J.: Recognition of the Hyaloperonospora parasitica effector ATR13 triggers resistance against oomycete, bacterial, and viral pathogens. — Proc. nat. Acad. Sci. USA 105: 1091–1096, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Ricci, P., Bonnet, P., Huet, J.C., Sallantin, M., Beauvais-Cante, F., Bruneteau, M., Billard, V., Michel, G., Pernollet, J.C.: Structure and activity of proteins from pathogenic fungi Phytophthora eliciting necrosis and acquired resistance in tobacco. — Eur. J. Biochem. 183: 555–563, 1989.

    Article  PubMed  CAS  Google Scholar 

  • Robatzek, S., Chinchilla, D., Boller, T.: Ligand-induced endocytosis of the pattern recognition receptor FLS2 in Arabidopsis. — Genes Dev. 20: 537–542, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Ron, M., Avni, A.: The receptor for the fungal elicitor ethylene-inducing xylanase is a member of a resistance-like gene family in tomato. — Plant Cell 16: 1604–1615, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Rosebrock, T.R., Zeng L., Brady, J.J., Robert, B.A., Xiao, F., Martin, G.B.: A bacterial E3 ubiquitin ligase targets a host protein kinase to disrupt plant immunity. — Nature 448: 370–374, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Scheer, J.M., Ryan, C.A.: The systemin receptor SR160 from Lycopersicon peruvianum is a member of the LRR receptor kinase family. — Proc. nat. Acad. Sci. USA. USA 99: 9585–9590, 2002.

    Article  CAS  Google Scholar 

  • Schulze, B., Mentzel, T., Jehle, A.K., Mueller, K.: Rapid heteromerization and phosphorylation of ligand-activated plant transmembrane receptors and their associated kinase BAK1. — J. biol. Chem. 285: 9444–9451, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Shao F., Golstein, C., Ade, J., Stoutemyer, M., Dixon, J.E., Innes, R.W.: Cleavage of Arabidopsis PBS1 by a bacterial type III effector. — Science 301: 1230–1233, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Sharp, J.K., McNeil, M., Albersheim, P.: The primary structures of one elicitor-active and seven elicitor-inactive hexa(beta-D-glucopyranosyl)-D-glucitols isolated from the mycelial walls of Phytophthora megasperma f. sp. glycinea. — J. biol. Chem. 259: 11321–11336, 1984.

    PubMed  CAS  Google Scholar 

  • Shen, Q.H., Saijo, Y., Mauch, S., Biskup, C.: Nuclear activity of MLA immune receptors links isolate-specific and basal disease-resistance responses. — Science 315: 1098–1103, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Shen, Q.H., Schulze-Lefert, P.: Rumble in the nuclear jungle: compartmentalization, trafficking, and nuclear action of plant immune receptors. — EMBO J. 26: 4293–4301, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Shimizu, T., Nakano, T., Takamizawa, D., Desaki, Y., Ishii-Minami, N., Nishizawa, Y., Minami, E., Okada, K., Yamane, H., Kaku, H., Shibuya, N.: Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice. — Plant J. 64: 204–214, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Song, W.Y., Wang, G.L., Chen, L.L., Kim, H.S.: A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. — Science 270: 1804–1806, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Stefani, E., Bazzi, C., Mazzucchi, U.: Modification of the Pseudomonas syringae pv. tabaci tobacco leaf interaction by bacterial oligosaccharides. — Physiol. mol. Plant Pathol. 45: 397–406, 1994.

    Article  CAS  Google Scholar 

  • Suarez-Rodriguez, M.C., Adams-Phillips, L., Liu, Y., Wang, H.: MEKK1 is required for flg22-induced MPK4 activation in Arabidopsis plants. — Plant Physiol. 143: 661–669, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, A., Casais, C., Ichimura, K., Shirasu, K.: HSP90 interacts with RAR1 and SGT1, and is essential for RPS2-mediated resistance in Arabidopsis. — Proc. nat. Acad. Sci. USA 100: 11777–11782, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Takken, F.L., Albrecht, M., Tameling, W.I.: Resistance proteins: molecular switches of plant defence. — Curr. Opin. Plant Biol. 9: 383–390, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Takken, F.L., Tameling, W.I.: To nibble at plant resistance proteins. — Science 324: 744–746, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, S., Ichikawa, A., Yamada, K., Tsuji, G., Nishiuchi, T., Mori, M., Koga, H., Nishizawa, Y., O’Connell, R., Kubo, Y.: HvCEBiP, a gene homologous to rice chitin receptor CEBiP, contributes to basal resistance of barley to Magnaporthe oryzae. — BMC Plant Biol. 10: 288, 2010

    Article  PubMed  CAS  Google Scholar 

  • Torres, M.A., Dangl, J.L.: Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. — Curr. Opin. Plant Biol. 8: 397–403, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Umemoto, N., Kakitani, M., Iwamatsu, A., Yoshikawa, M., Yamaoka, N., Ishida, I.: The structure and function of a soybean beta-glucan-elicitor-binding protein. — Proc. nat. Acad. Sci. USA 94: 1029–1034, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Van der Hoorn, R.A., Kamoun, S.: From guard to decoy: a new model for perception of plant pathogen effectors. — Plant Cell 20: 2009–2017, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Wan, J., Zhang, S., Stacey, G.: Activation of a mitogen-activated protein kinase pathway in Arabidopsis by chitin. — Mol. Plant Pathol. 5: 125–135, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Wang, G.L., Ruan, D.L., Song, W.Y., Sideris, S., Chen, L., Pi, L.Y., Zhang, S., Zhang, Z., Fauquet, C., Gaut, B.S., Whalen, M.C., Ronald, P.C.: Xa21D encodes a receptor-like molecule with a leucine-rich repeat domain that determines race-specific recognition and is subject to adaptive evolution. — Plant Cell 10:765–79, 1998.

    PubMed  CAS  Google Scholar 

  • Wang, Y., Li, J., Hou, S., Wang, X., Li, Y., Ren, D., Chen, S., Tang, X., Zhou, J-M.: A Pseudomonas syringae ADP-ribosyltransferase jnhibits Arabidopsis mitogen-activated protein kinase kinases. — Plant Cell 22: 2033–2044, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Whitham, S., Dinesh-Kumar, S.P., Choi, D., Hehl, R., Corr, C., Baker, B.J.: The product of the tobacco mosaic virus resistance gene N: similarity to Toll and the interlukin-1 receptor. — Cell 78: 1101–1115, 1994.

    Article  PubMed  CAS  Google Scholar 

  • Wilton, M., Subramaniam, R., Elmore, J., Felsensteiner, C., Coaker, G., Desveaux, D. The type III effector HopF2Pto targets Arabidopsis RIN4 protein to promote Pseudomonas syringae virulence. — Proc. Nat. Acad. Sci. USA 107: 2349–2354, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Wirthmueller, L., Zhang Y., Jones J.D., Parker, J.E.: Nuclear accumulation of the Arabidopsis immune receptor RPS4 is necessary for triggering EDS1-dependent defense. — Curr. Biol. 17: 2023–2029, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Woltering, E.J.: Death proteases come alive. — Trends Plant Sci. 9: 469–472, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Xiang, T., Zong, N., Zou, Y., Wu, Y., Zhang, J., Xing, W.: Pseudomonas syringae effector AvrPto blocks innate immunity by targeting receptor kinases. — Curr. Biol. 18: 74–80, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Xiao, F., He, P., Abramovitch, R.B., Dawson, J.E., Nicholson, L.K., Sheen, J., Martin, G.B.: The N-terminal region of Pseudomonas type III effector AvrPtoB elicits Pto-dependent immunity and has two distinct virulence determinants. — Plant J. 52: 595–614, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi, T., Yamada, A., Hong, N., Ogawa, T., Ishii, T., Shibuya, N.: Differences in the recognition of glucan elicitor signals between rice and soybean: beta-glucan fragments from the rice blast disease fungus Pyricularia oryzae that elicit phytoalexin biosynthesis in suspension-cultured rice cells. — Plant Cell 12: 817–826, 2000.

    PubMed  CAS  Google Scholar 

  • Yamaguchi, Y., Pearce, G., Ryan, C.A.: The cell surface leucine-rich repeat receptor for AtPep1, an endogenous peptide elicitor in Arabidopsis, is functional in transgenic tobacco cells. — Proc. nat. Acad. Sci. USA 103: 10104–10109, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Zeidler, D., Zahringer, U., Gerber, I., Dubery, I., Hartung, T., Bors, W., Hutzler, P., Durner, J.: Innate immunity in Arabidopsis thaliana: lipopolysaccharides activate nitric oxide synthase (NOS) and induce defense genes. Proc. nat. Acad. Sci. USA 101: 15811–15816, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Zeng, W., He, S.Y.: A prominent role of the flagellin receptor FLAGELLIN-SENSING2 in mediating stomatal response to Pseudomonas syringae pv. tomato DC3000 in Arabidopsis. — Plant Physiol. 153: 1188–1198, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, J., Shao, F., Li, Y., Cui, H., Chen, L., Li, H.: A Pseudomonas syringae effector inactivates MAPKs to suppress PAMP-induced immunity in plants. — Cell Host Microbe 1: 175–185, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, J., Li, W., Xiang, T., Liu, Z., Laluk, K.: Receptor-like cytoplasmic kinases integrate signaling from multiple plant immune receptors and are targeted by a Pseudomonas syringae effector. — Cell Host Microbe 7: 290–301, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, S., Du, H., Klessig, D.F.: Activation of the tobacco SIP kinase by both a cell wall-derived carbohydrate elicitor and purified proteinaceous elicitins from Phytophthora spp. — Plant Cell 10: 435–450, 1998.

    PubMed  CAS  Google Scholar 

  • Zhang, W., He, S.Y., Assmann, S.M.: The plant innate immunity response in stomatal guard cells invokes G-proteindependent ion channel regulation. — Plant J. 122: 73–79, 2008.

    Google Scholar 

  • Zhu, Z., Xu F., Zhang, Y., Cheng, Y.T., Wiermer, M., Li, X., Zhang, Y.: Arabidopsis resistance protein SNC1 activates immune responses through association with a transcriptional corepressor. — Proc. Natl. Acad. Sci. USA 107: 13960–13965, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Zipfel, C., Kunze, G., Chinchilla, D., Caniard, A., Boller, T., Felix, G.: Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. — Cell 125: 749–760, 2006.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Hou.

Additional information

Acknowledgments: We would like to thank Dr. Hongwei Shao for reading the manuscript and an anonymous reviewer for giving some critical suggestions. The work is supported by the National Science Foundation of China (51078224).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hou, S., Zhang, C., Yang, Y. et al. Recent advances in plant immunity: recognition, signaling, response, and evolution. Biol Plant 57, 11–25 (2013). https://doi.org/10.1007/s10535-012-0109-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-012-0109-z

Additional key words

Navigation