Skip to main content
Log in

A broad mercury resistant strain of Pseudomonas putida secretes pyoverdine under limited iron conditions and high mercury concentrations

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

The Pseudomonas putida FB1, known as a broad-spectrum mercury resistant strain, becomes yellow-green due to the secretion of pyoverdine (PVDs) under limited iron conditions and high mercury concentrations. Different modified Nelson’s media were obtained by adding mercury, iron, and the complexing agent nitrilotriacetic acid to demonstrate that the strain produces only the highest concentrations of PVDs due to the induction with 25 µM Hg2+. An amount of 250 mg PVDs was purified from the supernatant of 1 litre culture. The various forms of PVDs were characterized using different techniques such as fluorescence spectroscopy, high performance liquid chromatography coupled with high resolution mass spectrometry, and scanning electron microscope equipped with energy dispersive X-ray analyser. A set of “in vivo” experiments demonstrated that additions of Hg2+ to the cultures from 10 to 25 µM Hg2+ stimulate an over secretion of PVDs suggesting that the toxic cation strongly reduces the availability of apo-PVDs, because the complex mercuric-pyoverdine is very stable at neutral pH, and hinder the formation of PVDs-Fe(III).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ackerley DF, Caradoc-Davies TT, Lamont IL (2003) Substrate specificity of the nonribosomal peptide synthetase PvdD from Pseudomonas aeruginosa. J Bacteriol 185:2848–2855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baldi F, Olson GJ, Brinckman FE (1986) Mercury trasformation by heterothrophic bacteria isolated from cinnabar and other metal sulfide deposits in Italy. Geomicrobiology J. 5:1–16

    Article  Google Scholar 

  • Baldi F, Coratza G, Manganelli R, Pozzi G (1988a) A strain of Pseudomonas putida isolated from a cinnabar mine with a plasmid determined broad-spectrum resistance to mercury. Microbios 54:7–13

    CAS  Google Scholar 

  • Baldi F, Cozzani E, Filippelli M (1988b) Gas chromatography/Fourier transform infrared spectroscopy for determining traces of methane from biodegradation of methylmercury. Environ Sci Technol 22:836–839

    Article  CAS  PubMed  Google Scholar 

  • Baldi F, Boudou A, Ribeyre F (1992) Response of a freshwater bacterial community to mercury contamination (HgCl2 and CH3HgCl) in a controlled system. Arch Environ Contam Toxicol 22:439–444

    Article  CAS  Google Scholar 

  • Baldi F, Parati F, Semplici F, Tandoi V (1993) Biological removal of inorganic Hg(II) as gaseous elemental Hg(0) by continous culture of a Hg-resistant Pseudomonas putida strain FB1. World J Microbiol Biotechnol 9:275–279

    Article  CAS  PubMed  Google Scholar 

  • Baldi F, Michele Gallo G, Marchetto D, Fani R, Maida I, Horvat H et al (2012) Seasonal mercury transformation and superficial sediment detoxification by bacteria of Marano and Grado Lagoon. Estuar Coast Shelf Sci 113:105–115

    Article  CAS  Google Scholar 

  • Bard AJ, Faulkner LR (2003) Electrochemical Methods. Wiley, New York

    Google Scholar 

  • Barkay T, Miller S, Summer A (2003) Bacterial mercury resistance from atoms to ecosytems. FEMS Microbiol Rev 27:355–384

    Article  CAS  PubMed  Google Scholar 

  • Battistel D, Baldi F, Marchetto D, Gallo M, Daniele S (2012) A rapid electrochemical procedure for the detection of Hg(0) produced by mercuric-reductase: application for monitoring Hg-resistant bacteria activity. Environ Sci Technol 46:10675–10681

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Braud A, Hoegy F, Jezequel K, Lebeau T, Schalk IJ (2009) New insights into the metal specificity of the Pseudomonas aeruginosa pyoverdine-iron uptake pathway. Environ Microbiol 11:1079–1091

    Article  CAS  PubMed  Google Scholar 

  • Cobessi D, Celia H, Folschweiller N, Heymann M, Schalk I, Abdallah M, Pattus F (2004) Crystallization and preliminary X-ray analysis of the outer membrane pyoverdine receptor FpvA from Pseudomonas aeruginosa. Acta Crystallogr D Biol Crystallogr 60:1467–1469

    Article  PubMed  Google Scholar 

  • Cunliffe HE, Merriman TR, Lamont IL (1995) Cloning and characterization of pvdS, a gene required for pyoverdine synthesis in Pseudomonas aeruginosa: PvdS is probably an alternative sigma factor. J Bacteriol 177:2744–2750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gousetis C, Opgenorth H-J (2005) Nitriloacetic acid. Wiley, Weinheim

    Google Scholar 

  • Greenwald J, Zeder-Lutz G, Hagege A, Celia H, Pattus F (2008) The metal dependence of pyoverdine interactions with its outer membrane receptor FpvA. J Bacteriol 190:6548–6558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hannauer M, Braud A, Hoegy F, Ronot P, Boos A, Schalk IJ (2012) The PvdRT-OpmQ efflux pump controls the metal selectivity of the iron uptake pathway mediated by the siderophore pyoverdine in Pseudomonas aeruginosa. Environ Microbiol 14:1696–1708

    Article  CAS  PubMed  Google Scholar 

  • Hartney SL, Mazurier S, Girard MK, Mehnaz S, Davis EW 2nd, Gross H et al (2013) Ferric-pyoverdine recognition by Fpv outer membrane proteins of Pseudomonas protegens Pf-5. J Bacteriol 195:765–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imperi F, Tiburzi F, Visca P (2009) Molecular basis of pyoverdine siderophore recycling in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 106:20440–20445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kadner RJ (2005) Regulation by iron: RNA rules the rust. J Bacteriol 187:6870–6873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer JM, Gruffaz C, Raharinosy V, Bezverbnaya I, Schafer M, Budzikiewicz H (2008) Siderotyping of fluorescent Pseudomonas: molecular mass determination by mass spectrometry as a powerful pyoverdine siderotyping method. Biometals 21:259–271

    Article  CAS  PubMed  Google Scholar 

  • Nascimento AM, Chartone-Souza E (2003) Operon mer: bacterial resistance to mercury and potential for bioremediation of contaminated environments. Genet Mol Res 2:92–101

    PubMed  Google Scholar 

  • Nelson JD, Blair WR, Brinckman FE, Colwell RR, Iverson WP (1973) Biodegradation of phenylmercury acetate by mercury-resistant bacteria. Appl Microbiol 26:321–326

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nolan RA, Nolan WG (1972) Elemental analysis of vitamin-free casamino acids. Appl Microbiol 24:290–291

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ravel J, Cornelis P (2003) Genomics of pyoverdine-mediated iron uptake in Pseudomonas. Trends Microbiol 11:195–200

    Article  CAS  PubMed  Google Scholar 

  • Schalk IJ (2008) Metal trafficking via siderophores in Gram-negative bacteria: specificities and characteristics of the pyoverdine pathway. J Inorg Biochem 102:1159–1169

    Article  CAS  PubMed  Google Scholar 

  • Schalk IJ, Guillon L (2013) Pyoverdine biosynthesis and secretion in Pseudomonas aeruginosa: implications for metal homeostasis. Environ Microbiol 15:1661–1673

    Article  CAS  PubMed  Google Scholar 

  • Siciliano SD, O’Driscoll NJ, Lean DRS (2002) Microbial reduction and oxidation of mercury in freshwater lakes. Environ Sci Technol 36:3064–3068

    Article  CAS  PubMed  Google Scholar 

  • Visca P, Imperi F, Lamont IL (2007) Pyoverdine siderophores: from biogenesis to biosignificance. Trends Microbiol 15:22–30

    Article  CAS  PubMed  Google Scholar 

  • WHO, SDE, WSH (2005) Mercury in drinking water: WHO guidelines for drinking-water quality. WHO, Geneva

    Google Scholar 

Download references

Acknowledgements

Financial support of the Ministry of University and Scientific Research (MIUR) (PRIN-2010AXENJ8) is gratefully acknowledged. Authors have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franco Baldi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 553 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baldi, F., Gallo, M., Battistel, D. et al. A broad mercury resistant strain of Pseudomonas putida secretes pyoverdine under limited iron conditions and high mercury concentrations. Biometals 29, 1097–1106 (2016). https://doi.org/10.1007/s10534-016-9980-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-016-9980-y

Keywords

Navigation