Skip to main content

Advertisement

Log in

Role and regulation of ferritin-like proteins in iron homeostasis and oxidative stress survival of Caulobacter crescentus

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Iron is an essential nutrient that is poorly available to living organisms but can be harmful when in excess due to the production of reactive oxygen species. Bacteria and other organisms use iron storage proteins called ferritins to avoid iron toxicity and as a safe iron source in the cytosol. The alpha-proteobacterium Caulobacter crescentus has two putative ferritins, Bfr and Dps, and some other proteins belonging to the ferritin-like superfamily, among them the one encoded by CC_0557. In this work, we have analyzed the role and regulation of these three putative ferritin-like proteins. Using lacZ-transcriptional fusions, we found that bfr expression is positively regulated (2.5-fold induction) by the Fe-responsive regulator Fur in iron sufficiency, as expected for an iron storage protein. Expression of dps was induced 1.5-fold in iron limitation in a Fur-independent manner, while the expression of the product of CC_0557 was unaffected by either iron supply or Fur. With respect to growth phase, while bfr expression was constant during growth, expression of dps (1.4-fold) and CC_0557 (around seven times) increased in the transition from exponential to stationary phase. Deletion mutant strains for each gene and a double dps/bfr mutant were obtained and tested for oxidative stress resistance. The dps mutant was very sensitive to H2O2, and this phenotype was not relieved by the addition of the iron chelator 2′,2-dipyridyl in the conditions tested. While bfr and CC_0557 showed no phenotype as to H2O2 resistance, the double dps/bfr mutant had a similar phenotype to the dps mutation alone. These findings indicate that in C. crescentus Bfr contributes to iron homeostasis and Dps has a role in protection against oxidative stress. The role of the protein CC_0557 containing a ferritin-like fold remains unclear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Almirón MA, Ugalde RA (2010) Iron homeostasis in Brucella abortus: the role of bacterioferritin. J Microbiol 48:668–673

    Article  PubMed  Google Scholar 

  • Almirón M, Link AJ, Furlong D, Kolter R (1992) A novel DNA binding protein with regulatory and protective roles in starved Escherichia coli. Genes Dev 6:2646–2654

    Article  PubMed  Google Scholar 

  • Altuvia S, Almirón M, Huisman G, Kolter R, Storz G (1994) The dps promoter is activated by OxyR during growth and by IHF and sigma S in stationary phase. Mol Microbiol 13:265–272

    Article  CAS  PubMed  Google Scholar 

  • Andrews SC (2010) The Ferritin-like superfamily: evolution of the biological iron storeman from a rubrerythrin-like ancestor. Biochim Biophys Acta 1800:691–705

    Article  CAS  PubMed  Google Scholar 

  • Andrews SC, Robinson AK, Rodríguez-Quiñones F (2003) Bacterial iron homeostasis. FEMS Microbiol Rev 27:215–237

    Article  CAS  PubMed  Google Scholar 

  • Arosio P, Ingrassia R, Cavadini P (2009) Ferritins: a Family of molecules for iron storage, antioxidation and more. Biochim Biophys Acta 1790:589–599

    Article  CAS  PubMed  Google Scholar 

  • Bevers LE, Theil EC (2011) Maxi- and mini-ferritins: minerals and protein nanocages. Prog Mol Subcell Biol 52:29–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhubhanil S, Chamsing J, Sittipo P, Chaoprasid P, Sukchawalit R, Mongkolsuk S (2014) Roles of Agrobacterium tumefaciens membrane-bound ferritin (MbfA) in iron transport and resistance to iron under acidic conditions. Microbiology 160:863–871

    Article  CAS  PubMed  Google Scholar 

  • Bou-Abdallah F (2010) The iron redox and hydrolysis chemistry of the ferritins. Biochim Biophys Acta 1800:719–731

    Article  CAS  PubMed  Google Scholar 

  • Boughammoura A, Expert D, Franza T (2012) Role of the Dickeya dadantii Dps protein. Biometals 25:423–433

    Article  CAS  PubMed  Google Scholar 

  • Braun V, Hantke K (2011) Recent insights into iron import by bacteria. Curr Opin Chem Biol 15(2):328–334

    Article  CAS  PubMed  Google Scholar 

  • Carpenter BM, Whitmire JM, Merrell DS (2009) This is not your mother’s repressor: the complex role of Fur in pathogenesis. Infect Immun 77:2590–2601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cassat JE, Skaar EP (2013) Iron in infection and immunity. Cell Host Microbe 123:509–519

    Article  Google Scholar 

  • Ceci P, Ilari A, Falvo E, Chiancone E (2003) The Dps protein of Agrobacterium tumefaciens does not bind to DNA but protects it toward oxidative cleavage: X-ray crystal structure, iron binding, and hydroxyl-radical scavenging properties. J Biol Chem 278:20319–20326

    Article  CAS  PubMed  Google Scholar 

  • Chiancone E, Ceci P (2010) The multifaceted capacity of Dps proteins to combat bacterial stress conditions: detoxification of iron and hydrogen peroxide and DNA binding. Biochim Biophys Acta 1800:798–805

    Article  CAS  PubMed  Google Scholar 

  • da Silva Neto JF, Braz VS, Italiani VC, Marques MV (2009) Fur controls iron homeostasis and oxidative stress defense in the oligotrophic alpha-proteobacterium Caulobacter crescentus. Nucleic Acids Res 37:4812–4825

    Article  PubMed  PubMed Central  Google Scholar 

  • da Silva Neto JF, Lourenço RF, Marques MV (2013) Global transcriptional response of Caulobacter crescentus to iron availability. BMC Genom 14:549

    Article  Google Scholar 

  • Ely B (1991) Genetics of Caulobacter crescentus. Methods Enzymol 204:372–384

    Article  CAS  PubMed  Google Scholar 

  • Evinger M, Agabian N (1977) Envelope-associated nucleoid from Caulobacter crescentus stalked and swarmer cells. J Bacteriol 132:294–301

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fillat MF (2014) The FUR (ferric uptake regulator) superfamily: diversity and versatility of key transcriptional regulators. Arch Biochem Biophys 546:41–52

    Article  CAS  PubMed  Google Scholar 

  • Gober JW, Shapiro L (1992) A developmentally regulated Caulobacter flagellar promoter is activated by 3′ enhancer and IHF binding elements. Mol Biol Cell 3:326–913

    Article  Google Scholar 

  • Gomez D, Lucas-Elio P, Solano F, Sanchez-Amat A (2010) Both genes in the Marinomonas mediterranea lodAB operon are required for the expression of the antimicrobial protein lysine oxidase. Mol Microbiol 75:462–473

    Article  CAS  PubMed  Google Scholar 

  • Haikarainen T, Papageorgiou AC (2010) Dps-like proteins: structural and functional insights into a versatile protein family. Cell Mol Life Sci 67:341–351

    Article  CAS  PubMed  Google Scholar 

  • Halsey TA, Vazquez-Torres A, Gravdahl DJ, Fang FC, Libby SJ (2004) The ferritin-like Dps protein is required for Salmonella enterica serovar Typhimurium oxidative stress resistance and virulence. Infect Immun 72:1155–1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557

    Article  CAS  PubMed  Google Scholar 

  • Hantke K (1981) Regulation of ferric iron transport in Escherichia coli K12: isolation of a constitutive mutant. Mol Gen Genet 182:288–292

    Article  CAS  PubMed  Google Scholar 

  • Imlay JA (2013) The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat Rev Microbiol 11:443–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishikawa T, Mizunoe Y, Kawabata S, Takade A, Harada M, Wai SN, Yoshida S (2003) The iron-binding protein Dps confers hydrogen peroxide stress resistance to Campylobacter jejuni. J Bacteriol 185:1010–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Italiani VC, da Silva Neto JF, Braz VS, Marques MV (2011) Regulation of catalase-peroxidase KatG is OxyR dependent and Fur independent in Caulobacter crescentus. J Bacteriol 193:1734–1744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karas VO, Westerlaken I, Meyer AS (2015) The DNA-binding protein from starved cells (Dps) utilizes dual functions to defend cells against multiple stresses. J Bacteriol 197:3206–3215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Brun NE, Crow A, Murphy ME, Mauk AG, Moore GR (2010) Iron core mineralisation in prokaryotic ferritins. Biochim Biophys Acta 1800:732–744

    Article  PubMed  Google Scholar 

  • Lee JW, Helmann JD (2007) Functional specialization within the Fur family of metalloregulators. Biometals 20:485–499

    Article  CAS  PubMed  Google Scholar 

  • Lourenço RF, Kohler C, Gomes SL (2011) A two-component system, an anti-sigma factor and two paralogous ECF sigma factors are involved in the control of general stress response in Caulobacter crescentus. Mol Microbiol 80:1598–1612

    Article  PubMed  Google Scholar 

  • Lundin D, Poole AM, Sjöberg BM, Högbom M (2012) Use of structural phylogenetic networks for classification of the ferritin-like superfamily. J Biol Chem 287:20565–20575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mai-Prochnow A, Lucas-Elio P, Egan S, Thomas T, Webb JS, Sanchez-Amat A, Kjelleberg S (2008) Hydrogen peroxide linked to lysine oxidase activity facilitates biofilm differentiation and dispersal in several Gram-negative bacteria. J Bacteriol 190:5493–5501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez A, Kolter R (1997) Protection of DNA during oxidative stress by the nonspecific DNA-binding protein Dps. J Bacteriol 179:5188–5194

    CAS  PubMed  PubMed Central  Google Scholar 

  • Massé E, Gottesman S (2002) A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proc Natl Acad Sci USA 99:4620–4625

    Article  PubMed  PubMed Central  Google Scholar 

  • McGrath PT, Lee H, Zhang L, Iniesta AA, Hottes AK, Tan MH, Hillson NJ, Hu P, Shapiro L, McAdams HH (2007) High-throughput identification of transcription start sites, conserved promoter motifs and predicted regulons. Nat Biotechnol 25:584–592

    Article  CAS  PubMed  Google Scholar 

  • Meyer AS, Grainger DC (2013) The Escherichia coli nucleoid in stationary phase. Adv Appl Microbiol 83:69–86

    Article  CAS  PubMed  Google Scholar 

  • Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor, New York

    Google Scholar 

  • Nierman WC, Feldblyum TV, Laub MT, Paulsen IT, Nelson KE, Eisen JA, Heidelberg JF, Alley MR, Ohta N, Maddock JR, Potocka I, Nelson WC, Newton A, Stephens C, Phadke ND, Ely B, DeBoy RT, Dodson RJ, Durkin AS, Gwinn ML, Haft DH, Kolonay JF, Smit J, Craven MB, Khouri H, Shetty J, Berry K, Utterback T, Tran K, Wolf A, Vamathevan J, Ermolaeva M, White O, Salzberg SL, Venter JC, Shapiro L, Fraser CM (2001) Complete genome sequence of Caulobacter crescentus. Proc Natl Acad Sci USA 98:4136–4141

  • O’Brian MR (2015) Perception and Homeostatic Control of Iron in the Rhizobia and Related Bacteria. Annu Rev Microbiol 69:229–245

    Article  PubMed  Google Scholar 

  • Oglesby-Sherrouse AG, Murphy ER (2013) Iron-responsive bacterial small RNAs: variations on a theme. Metallomics 5:276–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ringeling PL, Davy SL, Monkara FA, Hunt C, Dickson DP, McEwan AG, Moore GR (1994) Iron metabolism in Rhodobacter capsulatus. Characterisation of bacterioferritin and formation of non-haem iron particles in intact cells. Eur J Biochem 223:847–855

    Article  CAS  PubMed  Google Scholar 

  • Roberts RC, Toochinda C, Avedissian M, Baldini RL, Gomes SL, Shapiro L (1996) Identification of a Caulobacter crescentus operon enconding hrcA, involved in negatively regulating heat-inducible transcription, and chaperone gene grpE. J Bacteriol 178(7):1829–1841

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodionov DA, Gelfand MS, Todd JD, Curson AR, Johnston AW (2006) Computational reconstruction of iron- and manganese-responsive transcriptional networks in alpha-proteobacteria. Plos Comput Biol 2:e163

    Article  PubMed  PubMed Central  Google Scholar 

  • Sankari S, O’Brian MR (2014) A bacterial iron exporter for maintenance of iron homeostasis. J Biol Chem 289:16498–16507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sankari S, O’Brian MR (2016) Synthetic lethality of the bfr and mbfA genes reveals a functional relationship between iron storage and iron export in managing stress responses in Bradyrhizobium japonicum. Plos One 11(6):e0157250

    Article  PubMed  PubMed Central  Google Scholar 

  • Schrader JM, Zhou B, Li GW, Lasker K, Childers WS, Williams B, Long T, Crosson S, McAdams HH, Weissman JS, Shapiro L (2014) The coding and noncoding architecture of the Caulobacter crescentus genome. Plos Genet 10:e1004463

    Article  PubMed  PubMed Central  Google Scholar 

  • Semsey S, Andersson AM, Krishna S, Jensen MH, Massé E, Sneppen K (2006) Genetic regulation of fluxes: iron homeostasis of Escherichia coli. Nucleic Acids Res 34:4960–4967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simon R, Prieffer U, Puhler A (1983) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Biotechnology 1:784–790

    Article  CAS  Google Scholar 

  • Velayudhan J, Castor M, Richardson A, Main-Hester KL, Fang FC (2007) The role of ferritins in the physiology of Salmonella enterica sv. Typhimurium: a unique role for ferritin B in iron-sulphur cluster repair and virulence. Mol Microbiol 63:1495–1507

    Article  CAS  PubMed  Google Scholar 

  • Wandersman C, Delepelaire P (2004) Bacterial iron sources: from siderophores to hemophores. Annu Rev Microbiol 58:611–647

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Wang M, Wang X, Guan G, Li Y, Peng Y, Li J (2015) Iron response regulator protein IrrB in Magnetospirillum gryphiswaldense MSR-1 helps control the iron/oxygen balance, oxidative stress tolerance, and magnetosome formation. Appl Environ Microbiol 81:8044–8053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao G, Ceci P, Ilari A, Giangiacomo L, Laue TM, Chiancone E, Chasteen ND (2002) Iron and hydrogen peroxide detoxification properties of DNA-binding protein from starved cells. A ferritin-like DNA-binding protein of Escherichia coli. J Biol Chem 277:27689–27696

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grant 470663/2011-1 from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq-Brasil). During the course of this work, MMR was supported by a fellowship from São Paulo Research Foundation (FAPESP) Grant 2009/02379-1. IGCF was supported by an undergraduate fellowship grant from PIBIC-University of Sao Paulo 2013/1821 and MVM was partly supported by Grant 306558/2013-0 from CNPq-Brasil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marilis do Valle Marques.

Additional information

Ivan Gonçalves de Castro Ferreira and Mirian Molnar Rodrigues contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 988 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Castro Ferreira, I.G., Rodrigues, M.M., da Silva Neto, J.F. et al. Role and regulation of ferritin-like proteins in iron homeostasis and oxidative stress survival of Caulobacter crescentus . Biometals 29, 851–862 (2016). https://doi.org/10.1007/s10534-016-9956-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-016-9956-y

Keywords

Navigation