Skip to main content
Log in

Cooperative adsorption of critical metal ions using archaeal poly-γ-glutamate

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Antimony, beryllium, chromium, cobalt (Co), gallium (Ga), germanium, indium (In), lithium, niobium, tantalum, the platinoids, the rare-earth elements (including dysprosium, Dy), and tungsten are generally regarded to be critical (rare) metals, and the ions of some of these metals are stabilized in acidic solutions. We examined the adsorption capacities of three water-soluble functional polymers, namely archaeal poly-γ-glutamate (L-PGA), polyacrylate (PAC), and polyvinyl alcohol (PVA), for six valuable metal ions (Co2+, Ni2+, Mn2+, Ga3+, In3+, and Dy3+). All three polymers showed apparently little or no capacity for divalent cations, whereas L-PGA and PAC showed the potential to adsorb trivalent cations, implying the beneficial valence-dependent selectivity of anionic polyelectrolytes with multiple carboxylates for metal ions. PVA did not adsorb metal ions, indicating that the crucial role played by carboxyl groups in the adsorption of crucial metal ions cannot be replaced by hydroxyl groups under the conditions. In addition, equilibrium studies using the non-ideal competitive adsorption model indicated that the potential for L-PGA to be used for the removal (or collection) of water-soluble critical metal ions (e.g., Ga3+, In3+, and Dy3+) was far superior to that of any other industrially-versatile PAC materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Ashiuchi M, Fukushima K, Oya H et al (2013) Development of antimicrobial thermoplastic material from archaeal poly-γ-l-glutamate and its nanofabrication. ACS Appl Mater Interfaces 5:1619–1624

    Article  CAS  PubMed  Google Scholar 

  • Ashiuchi M, Oike S, Hakuba H, Shibatani S, Oka N, Wakamatsu T (2015) Rapid purification and plasticization of d-glutamate-containing poly-γ-glutamate from Japanese fermented soybean food natto. J Pharm Biomed Anal. doi:10.1016/j.jpba.2015.01.031

    PubMed  Google Scholar 

  • Beauvais RA, Alexandratos SD (1998) Polymer-supported reagents for the selective complexation metal ions: an overview. React Funct Polym 36:113–123

    Article  CAS  Google Scholar 

  • Chakhmouradian AR, Smith MP, Kynicky J (2015) From “strategic” tungsten to “green” neodymium: a century of critical metals at a glance. Ore Geol Rev 64:455–458

    Article  Google Scholar 

  • Chan CF, Tsang MK, Li H et al (2014) Bifunctional up-converting lanthanide nanoparticles for selective in vitro imaging and inhibition of cyclin D as anti-cancer agents. J Mater Chem B 2:84–91

    Article  CAS  Google Scholar 

  • Das N, Vimara R, Karthika P (2008) Biosorption of heavy metals—an overview. Indian J Biotechnol 7:159–169

    CAS  Google Scholar 

  • Ewecharoena A, Thiravetyana P, Wendel E, Bertagnolli H (2009) Nickel adsorption by sodium polyacrylate-grafted activated carbon. J Hazard Mater 171:335–339

    Article  Google Scholar 

  • Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156:2–10

    Article  CAS  Google Scholar 

  • Ghasemi J, Peyman H, Meloun M (2007) Study of complex formation between 4-(2-pyridylazo) resorcinol and Al3+, Fe3+, Zn2+, and Cd2+ ions in an aqueous solution at 0.1 M ionic strength. J Chem Eng Data 52:1171–1178

    Article  CAS  Google Scholar 

  • Hezayen FF, Rehm BHA, Tindall BJ, Steinbüchel A (2001) Transfer of Natrialba asiatica B1T to Natrialba taiwanensis sp. nov., a novel extremely halophilic, aerobic, non-pigmented member of the Archaea from Egypt that produces extracellular poly (glutamic acid). Int J Syst Evol Microbiol 51:1133–1142

    Article  CAS  PubMed  Google Scholar 

  • Hill AV (1910) The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J Physiol (London) 40:4–7

    Google Scholar 

  • Huo Y, Cheng H, Post AF, Wang C, Jiang X, Pan J, Wu M, Xu X (2015) Ecological functions of uncultured microorganisms in the cobalt-rich ferromanganese crust of a seamount in the central Pacific are elucidated by fosmid sequencing. Acta Oceanol Sin 34:92–113

    Article  CAS  Google Scholar 

  • Kelson AB, Carnevali M, Truong-Le V (2013) Gallium-based anti-infectives: targeting microbial iron-uptake mechanisms. Curr Opin Pharmacol 13:707–716

    Article  CAS  PubMed  Google Scholar 

  • Kogej K, Fonseca SM, Rovisco J, Azenha ME, Ramos ML, de Melo JSS, Burrows HD (2013) Understanding the interaction between trivalent lanthanide ions and stereoregular polymethacrylates through luminescence, binding isotherms, NMR, and interaction with cetylpyridinium chloride. Langmuir 29:14429–14437

    Article  CAS  PubMed  Google Scholar 

  • Koopal LK, van Riemsdijk WH, de Wit JCM, Benedetti MF (1994) Analytical isotherm equation for multicomponent adsorption to heterogeneous surfaces. J Colloid Interface Sci 166:51–60

    Article  CAS  Google Scholar 

  • Koopal LK, van Riemsdijk WH, Kinniburgh DG (2001) Humic matter and contaminants. General aspects and modelling ion binding. Pure Appl Chem 73:2005–2016

    Article  CAS  Google Scholar 

  • Kwiatkowska-Marksa S, Wójcika M (2014) Removal of cadmium(II) from aqueous solutions by calcium alginate beads. Sep Sci Technol 49:2204–2211

    Article  Google Scholar 

  • Langmuir I (1916) The adsorption of gases on plane surface of glass, mica and platinum. J Am Chem Soc 40:1361–1403

    Article  Google Scholar 

  • Levina A, Lay PA (2011) Metal-based anti-diabetic drugs: advances and challenges. Dalton Trans 40:11675–11686

    Article  CAS  PubMed  Google Scholar 

  • Liao L, Xu XW, Jiang XW, Wang CS, Zhang DS, Ni JY, Wu M (2011) Microbial diversity in deep-sea sediment from the cobalt-rich crust deposit region in the Pacific Ocean. FEMS Microbiol Ecol 78:565–585

    Article  CAS  PubMed  Google Scholar 

  • Ma H, Darmawan ET, Zhang M, Zhang L, Bryers JD (2013) Development of a poly(ether urethane) system for the controlled release of two novel anti-biofilm agents based on gallium or zinc and its efficacy to prevent bacterial biofilm formation. J Control Release 172:1035–1044

    Article  CAS  PubMed  Google Scholar 

  • Moriyama M, Uyama H, van der Vlies AJ, Hasegawa U (2015) Cross-linked catechol-bearing poly(γ-glutamic acid) self-aggregates with antioxidant activity. Colloid Polym Sci 293:1245–1251

    Article  CAS  Google Scholar 

  • Ogi T, Tamaoki K, Saitoh N, Higashi A, Konishi Y (2012) Recovery of indium from aqueous solutions by the Gram-negative bacterium Shewanella algae. Biochem Eng J 63:129–133

    Article  CAS  Google Scholar 

  • Park C, Choi JC, Choi YH et al (2005) Synthesis of super-high-molecular-weight poly-γ-glutamic acid by Bacillus subtilis subsp. chungkookjang. J Mol Catal B Enzym 35:128–133

    Article  CAS  Google Scholar 

  • Parka SB, Hasegawa U, van der Vlies AJ, Sung MH, Uyama H (2014) Preparation of poly(γ-glutamic acid)/hydroxyapatite monolith via biomineralization for bone tissue engineering. J Biomater Sci Polym Ed 25:1875–1890

    Article  Google Scholar 

  • Ringot D, Lerzy B, Chaplain K, Bonhoure JP, Auclair E, Larondelle Y (2007) In vitro biosorption of ochratoxin A on the yeast industry by-products: comparison of isotherm models. Bioresour Technol 98:1812–1821

    Article  CAS  PubMed  Google Scholar 

  • Rivas BL, Pereira E, Maureira A (2009) Functional water-soluble polymers: polymer–metal ion removal and biocide properties. Polym Int 58:1093–1114

    Article  CAS  Google Scholar 

  • Sampranpiboon P, Charnkeitkong P, Feng X (2014) Equilibrium isotherm models for adsorption of zinc(II) ion from aqueous solution on pulp waste. WSEAS Trans Environ Dev 10:35–47

    Google Scholar 

  • Sawai H, Rahman IMM, Tsukagoshi Y, Wakabayashi T, Maki T, Mizutani S, Hasegawa H (2015) Selective recovery of indium from lead-smelting dust. Chem Eng J 277:219–228

    Article  CAS  Google Scholar 

  • Vijayaraghavan K, Yun YS (2008) Bacterial biosorbents and biosorption. Biotechnol Adv 26:266–291

    Article  CAS  PubMed  Google Scholar 

  • Wu N, Li Z (2013) Synthesis and characterization of poly(HEA/MALA) hydrogel and its application in removal of heavy metal ions from water. Chem Eng J 215–216:894–902

    Article  Google Scholar 

  • Yamasaki D, Minouchi Y, Ashiuchi M (2010) Extremolyte-like applicability of an archaeal exopolymer, poly-γ-L-glutamate. Environ Technol 31:1129–1134

    Article  CAS  PubMed  Google Scholar 

  • Yokoi H, Kawata S, Iwaizumi M (1986) Interaction modes between heavy metal ions and water-soluble polymers. 1. Spectroscopic and magnetic reexamination of the aqueous solutions of cupric ions and poly(vinyl alcohol). J Am Chem Soc 108:3358–3361

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Ashiuchi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 255 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hakumai, Y., Oike, S., Shibata, Y. et al. Cooperative adsorption of critical metal ions using archaeal poly-γ-glutamate. Biometals 29, 527–534 (2016). https://doi.org/10.1007/s10534-016-9928-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-016-9928-2

Keywords

Navigation