Skip to main content
Log in

Investigation of the multifaceted iron acquisition strategies of Burkholderia cenocepacia

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Burkholderia cenocepacia is a bacterial pathogen which causes severe respiratory infections in cystic fibrosis (CF). These studies were aimed at gaining an insight into the iron acquisition strategies of B. cenocepacia. In iron restricted conditions, genes associated with the synthesis and utilisation of ornibactin (pvdA, orbA, orb F) were significantly upregulated compared to the expression of pyochelin associated genes (pchD, fptA). In the absence of alternative iron sources, B. cenocepacia J2315 and 715j utilised ferritin and haemin, but not transferrin or lactoferrin for growth. Significantly, mutants unable to produce ornibactin, (715j-orbI) or ornibactin and pyochelin, (715j-pobA), utilised haemin and ferritin more efficiently than the wild-type. Moreover, both mutants were also able to utilise lactoferrin for growth (P ≤ 0.01) and additionally 715j-pobA utilised transferrin (P ≤ 0.01), potentially facilitating adaptation to the host environment. Furthermore, B. cenocepacia increased ornibactin gene expression in response to pyoverdine from Pseudomonas aeruginosa (P ≤ 0.01), demonstrating the capacity to compete for iron in co-colonised niches. Pyoverdine also significantly diminished the growth of B. cenocepacia (P < 0.001) which was related to its iron chelating activity. In a study of three B. cenocepacia sequential clonal isolates obtained from a CF patient over a 3.5 year period, ornibactin upregulation in response to pyoverdine was less pronounced in the last isolate compared to the earlier isolates, as was growth in the presence of haemin and ferritin, indicating alternative iron acquisition mechanism(s) may dominate as chronic infection progresses. These data demonstrate the multifaceted iron acquisition strategies of B. cenocepacia and their capacity to be differentially activated in the presence of P. aeruginosa and during chronic infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agnoli K, Lowe CA, Farmer KL, Husnain SI, Thomas MS (2006) The ornibactin biosynthesis and transport genes of Burkholderia cenocepacia are regulated by an extracytoplasmic function sigma factor which is a part of the Fur regulon. J Bacteriol 188:3631–3644. doi:10.1128/JB.188.10.3631-3644.2006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Asghar AH, Shastri S, Dave E, Wowk I, Agnoli K, Cook AM, Thomas MS (2011) The pobA gene of Burkholderia cenocepacia encodes a group I Sfp-type phosphopantetheinyltransferase required for biosynthesis of the siderophores ornibactin and pyochelin. Microbiology 157(2):349–361. doi:10.1099/mic.0.045559-0

  • Baker HM, Baker EN (2004) Lactoferrin and iron: structural and dynamic aspects of binding and release. Biometals 17:209–216

    Article  CAS  PubMed  Google Scholar 

  • Bakkal S, Robinson SM, Ordonez CL, Waltz DA, Riley MA (2010) Role of bacteriocins in mediating interactions of bacterial isolates taken from cystic fibrosis patients. Microbiology 156:2058–2067. doi:10.1099/mic.0.036848-0

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brock JH (2012) Lactoferrin–50 years on. Biochem Cell Biol 90:245–251. doi:10.1139/o2012-018

    Article  CAS  PubMed  Google Scholar 

  • Caraher EM, Gumulapurapu K, Taggart CC, Murphy P, McClean S, Callaghan M (2007) The effect of recombinant human lactoferrin on growth and the antibiotic susceptibility of the cystic fibrosis pathogen Burkholderia cepacia complex when cultured planktonically or as biofilms. J Antimicrob Chemother 60(3):546–554

  • Caza M, Kronstad JW (2013) Shared and distinct mechanisms of iron acquisition by bacterial and fungal pathogens of humans. Front Cell Infect Microbiol 3:80. doi:10.3389/fcimb.2013.00080

    Article  PubMed Central  PubMed  Google Scholar 

  • Costello A, Reen FJ, O’Gara F, Callaghan M, McClean S (2014) Inhibition of co-colonizing cystic fibrosis-associated pathogens by Pseudomonas aeruginosa and Burkholderia multivorans. Microbiology 160:1474–1487. doi:10.1099/mic.0.074203-0

    Article  CAS  PubMed  Google Scholar 

  • Coutinho CP, de Carvalho CC, Madeira A, Pinto-de-Oliveira A, Sa-Correia I (2011a) Burkholderia cenocepacia phenotypic clonal variation during a 3.5-year colonization in the lungs of a cystic fibrosis patient. Infect Immun 79:2950–2960. doi:10.1128/IAI.01366-10

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Coutinho CP, Dos Santos SC, Madeira A, Mira NP, Moreira AS, Sa-Correia I (2011b) Long-term colonization of the cystic fibrosis lung by Burkholderia cepacia complex bacteria: epidemiology, clonal variation, and genome-wide expression alterations. Front Cell Infect Microbiol 1:12. doi:10.3389/fcimb.2011.00012

    Article  PubMed Central  PubMed  Google Scholar 

  • Cunha MV, Leitao JH, Mahenthiralingam E, Vandamme P, Lito L, Barreto C, Salgado MJ, Sa-Correia I (2003) Molecular analysis of Burkholderia cepacia complex isolates from a Portuguese cystic fibrosis center: a 7-year study. J Clin Microbiol 41:4113–4120

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Darling P, Chan M, Cox AD, Sokol PA (1998) Siderophore production by cystic fibrosis isolates of Burkholderia cepacia. Infect Immun 66:874–877

    PubMed Central  CAS  PubMed  Google Scholar 

  • Davis PB, Drumm M, Konstan MW (1996) Cystic fibrosis. Am J Respir Crit Care Med 154:1229–1256. doi:10.1164/ajrccm.154.5.8912731

    Article  CAS  PubMed  Google Scholar 

  • De Vos D, De Chial M, Cochez C, Jansen S, Tummler B, Meyer JM, Cornelis P (2001) Study of pyoverdine type and production by Pseudomonas aeruginosa isolated from cystic fibrosis patients: prevalence of type II pyoverdine isolates and accumulation of pyoverdine-negative mutations. Arch Microbiol 175:384–388

    Article  PubMed  Google Scholar 

  • Drevinek P, Mahenthiralingam E (2010) Burkholderia cenocepacia in cystic fibrosis: epidemiology and molecular mechanisms of virulence. Clin Microbiol Infect 16:821–830. doi:10.1111/j.1469-0691.2010.03237.x

    Article  CAS  PubMed  Google Scholar 

  • Drevinek P, Holden MT, Ge Z, Jones AM, Ketchell I, Gill RT, Mahenthiralingam E (2008) Gene expression changes linked to antimicrobial resistance, oxidative stress, iron depletion and retained motility are observed when Burkholderia cenocepacia grows in cystic fibrosis sputum. BMC Infect Dis 8:121. doi:10.1186/1471-2334-8-121

    Article  PubMed Central  PubMed  Google Scholar 

  • Ganz T (2009) Iron in innate immunity: starve the invaders. Curr Opin Immunol 21:63–67. doi:10.1016/j.coi.2009.01.011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ghio AJ, Roggli VL, Soukup JM, Richards JH, Randell SH, Muhlebach MS (2013) Iron accumulates in the lavage and explanted lungs of cystic fibrosis patients. J Cyst Fibros 12:390–398. doi:10.1016/j.jcf.2012.10.010

    Article  CAS  PubMed  Google Scholar 

  • Harrison F, Paul J, Massey RC, Buckling A (2008) Interspecific competition and siderophore-mediated cooperation in Pseudomonas aeruginosa. ISME J 2:49–55. doi:10.1038/ismej.2007.96

    Article  PubMed  Google Scholar 

  • Henry DA, Campbell ME, LiPuma JJ, Speert DP (1997) Identification of Burkholderia cepacia isolates from patients with cystic fibrosis and use of a simple new selective medium. J Clin Microbiol 35:614–619

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hoiby N, Ciofu O, Bjarnsholt T (2010) Pseudomonas aeruginosa biofilms in cystic fibrosis. Future Microbiol 5:1663–1674. doi:10.2217/fmb.10.125

    Article  CAS  PubMed  Google Scholar 

  • Holden MT, Seth-Smith HM, Crossman LC, Sebaihia M, Bentley SD, Cerdeño-Tárraga AM, Thomson NR, Bason N, Quail MA, Sharp S, Cherevach I, Churcher C, Goodhead I, Hauser H, Holroyd N, Mungall K, Scott P, Walker D, White B, Rose H, Iversen P, Mil-Homens D, Rocha EP, Fialho AM, Baldwin A, Dowson C, Barrell BG, Govan JR, Vandamme P, Hart CA, Mahenthiralingam E, Parkhill J (2009) The genome of Burkholderia cenocepacia J2315, an epidemic pathogen of cystic fibrosis patients. J Bacteriol 191(1):261–277. doi:10.1128/JB.01230-08. Erratum in: J Bacteriol 191(8):2907

  • Hunter RC, Asfour F, Dingemans J, Osuna BL, Samad T, Malfroot A, Cornelis P, Newman DK (2013) Ferrous iron is a significant component of bioavailable iron in cystic fibrosis airways. MBio 4(4):pii:e00557–13. doi:10.1128/mBio.00557-13

  • Hutchison ML, Poxton IR, Govan JR (1998) Burkholderia cepacia produces a hemolysin that is capable of inducing apoptosis and degranulation of mammalian phagocytes. Infect Immun 66:2033–2039

    PubMed Central  CAS  PubMed  Google Scholar 

  • Imperi F, Tiburzi F, Visca P (2009) Molecular basis of pyoverdine siderophore recycling in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 106:20440–20445. doi:10.1073/pnas.0908760106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Isles A, Maclusky I, Corey M, Gold R, Prober C, Fleming P, Levison H (1984) Pseudomonas cepacia infection in cystic fibrosis: an emerging problem. J Pediatr 104:206–210

    Article  CAS  PubMed  Google Scholar 

  • Jacquot J, Tabary O, Le Rouzic P, Clement A (2008) Airway epithelial cell inflammatory signalling in cystic fibrosis. Int J Biochem Cell Biol 40:1703–1715. doi:10.1016/j.biocel.2008.02.002

    Article  CAS  PubMed  Google Scholar 

  • Konings AF, Martin LW, Sharples KJ, Roddam LF, Latham R, Reid DW, Lamont IL (2013) Pseudomonas aeruginosa uses multiple pathways to acquire iron during chronic infection in cystic fibrosis lungs. Infect Immun 81:2697–2704

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kooi C, Corbett CR, Sokol PA (2005) Functional analysis of the Burkholderia cenocepacia ZmpA metalloprotease. J Bacteriol 187:4421–4429. doi:10.1128/JB.187.13.4421-4429.2005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kvitko BH, Goodyear A, Propst KL, Dow SW, Schweizer HP (2012) Burkholderia pseudomallei known siderophores and hemin uptake are dispensable for lethal murine melioidosis. PLoS Negl Trop Dis 6:e1715. doi:10.1371/journal.pntd.0001715

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lubamba B, Dhooghe B, Noel S, Leal T (2012) Cystic fibrosis: insight into CFTR pathophysiology and pharmacotherapy. Clin Biochem 45:1132–1144. doi:10.1016/j.clinbiochem.2012.05.034

    Article  CAS  PubMed  Google Scholar 

  • Lyczak JB, Cannon CL, Pier GB (2002) Lung infections associated with cystic fibrosis. Clin Microbiol Rev 15:194–222

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Madeira A, Santos PM, Coutinho CP, Pinto-de-Oliveira A, Sa-Correia I (2011) Quantitative proteomics (2-D DIGE) reveals molecular strategies employed by Burkholderia cenocepacia to adapt to the airways of cystic fibrosis patients under antimicrobial therapy. Proteomics 11:1313–1328. doi:10.1002/pmic.201000457

    Article  CAS  PubMed  Google Scholar 

  • Madeira A et al (2013) Proteomic profiling of Burkholderia cenocepacia clonal isolates with different virulence potential retrieved from a cystic fibrosis patient during chronic lung infection. PLoS One 8:e83065. doi:10.1371/journal.pone.0083065

    Article  PubMed Central  PubMed  Google Scholar 

  • Mahenthiralingam E, Vandamme P (2005) Taxonomy and pathogenesis of the Burkholderia cepacia complex. Chronic Respir Dis 2:209–217

    Article  CAS  Google Scholar 

  • Mahenthiralingam E, Urban TA, Goldberg JB (2005) The multifarious, multireplicon Burkholderia cepacia complex. Nat Rev Microbiol 3:144–156. doi:10.1038/nrmicro1085

    Article  CAS  PubMed  Google Scholar 

  • Mahenthiralingam E, Baldwin A, Dowson CG (2008) Burkholderia cepacia complex bacteria: opportunistic pathogens with important natural biology. J Appl Microbiol 104:1539–1551. doi:10.1111/j.1365-2672.2007.03706.x

    Article  CAS  PubMed  Google Scholar 

  • Martin LW, Reid DW, Sharples KJ, Lamont IL (2011) Pseudomonas siderophores in the sputum of patients with cystic fibrosis. Biometals 24:1059–1067

    Article  CAS  PubMed  Google Scholar 

  • Marvig RL, Damkiaer S, Khademi SM, Markussen TM, Molin S, Jelsbak L (2014) Within-host evolution of Pseudomonas aeruginosa reveals adaptation toward iron acquisition from hemoglobin. MBio 5:e00966–00914. doi: 10.1128/mBio.00966-14

  • Masson PL, Heremans JF (1968) Metal-combining properties of human lactoferrin (red milk protein). 1. The involvement of bicarbonate in the reaction. Eur J Biochem FEBS 6:579–584

    Article  CAS  Google Scholar 

  • Mathew A, Eberl L, Carlier AL (2014) A novel siderophore-independent strategy of iron uptake in the genus Burkholderia. Mol Microbiol 91:805–820. doi:10.1111/mmi.12499

    Article  CAS  PubMed  Google Scholar 

  • McKenney D, Brown KE, Allison DG (1995) Influence of Pseudomonas aeruginosa exoproducts on virulence factor production in Burkholderia cepacia: evidence of interspecies communication. J Bacteriol 177:6989–6992

    PubMed Central  CAS  PubMed  Google Scholar 

  • Meyer JM, Stintzi A, De Vos D, Cornelis P, Tappe R, Taraz K, Budzikiewicz H (1997) Use of siderophores to type pseudomonads: the three Pseudomonas aeruginosa pyoverdine systems. Microbiology 143(Pt 1):35–43

    Article  CAS  PubMed  Google Scholar 

  • Mietzner TA, Morse SA (1994) The role of iron-binding proteins in the survival of pathogenic bacteria. Annu Rev Nutr 14:471–493. doi:10.1146/annurev.nu.14.070194.002351

    Article  CAS  PubMed  Google Scholar 

  • Moon CD, Zhang XX, Matthijs S, Schafer M, Budzikiewicz H, Rainey PB (2008) Genomic, genetic and structural analysis of pyoverdine-mediated iron acquisition in the plant growth-promoting bacterium Pseudomonas fluorescens SBW25. BMC Microbiol 8:7. doi:10.1186/1471-2180-8-7

    Article  PubMed Central  PubMed  Google Scholar 

  • Mossialos D, Amoutzias GD (2009) Role of siderophores in cystic fibrosis pathogenesis: foes or friends? Int J Med Microbiol 299:87–98. doi:10.1016/j.ijmm.2008.06.008

    Article  CAS  PubMed  Google Scholar 

  • Nguyen AT, O’Neill MJ, Watts AM, Robson CL, Lamont IL, Wilks A, Oglesby-Sherrouse AG (2014) Adaptation of iron homeostasis pathways by a Pseudomonas aeruginosa pyoverdine mutant in the cystic fibrosis lung. J Bacteriol 196:2265–2276. doi:10.1128/JB.01491-14

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Payne SM (1994) Detection, isolation, and characterization of siderophores. Methods Enzymol 235:329–344

    Article  CAS  PubMed  Google Scholar 

  • Peeters C, Zlosnik JE, Spilker T, Hird TJ, LiPuma JJ, Vandamme P (2013) Burkholderia pseudomultivorans sp. nov., a novel Burkholderia cepacia complex species from human respiratory samples and the rhizosphere. Syst Appl Microbiol 36:483–489. doi:10.1016/j.syapm.2013.06.003

    Article  PubMed  Google Scholar 

  • Ravel J, Cornelis P (2003) Genomics of pyoverdine-mediated iron uptake in pseudomonads. Trends Microbiol 11:195–200

    Article  CAS  PubMed  Google Scholar 

  • Riedel K et al (2001) N-acylhomoserine-lactone-mediated communication between Pseudomonas aeruginosa and Burkholderia cepacia in mixed biofilms. Microbiology 147:3249–3262

    CAS  PubMed  Google Scholar 

  • Schade AL, Reinhart RW, Levy H (1949) Carbon dioxide and oxygen in complex formation with iron and siderophilin, the iron-binding component of human plasma. Arch Biochem 20:170–172

    CAS  PubMed  Google Scholar 

  • Schlabach MR, Bates GW (1975) The synergistic binding of anions and Fe3+ by transferrin. Implications for the interlocking sites hypothesis. J Biol Chem 250:2182–2188

    CAS  PubMed  Google Scholar 

  • Shalom G, Shaw JG, Thomas MS (2007) In vivo expression technology identifies a type VI secretion system locus in Burkholderia pseudomallei that is induced upon invasion of macrophages. Microbiology 153:2689–2699. doi:10.1099/mic.0.2007/006585-0

    Article  CAS  PubMed  Google Scholar 

  • Sokol PA, Darling P, Woods DE, Mahenthiralingam E, Kooi C (1999) Role of ornibactin biosynthesis in the virulence of Burkholderia cepacia: characterization of pvdA, the gene encoding l-ornithine N(5)-oxygenase. Infect Immun 67:4443–4455

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sokol PA, Darling P, Lewenza S, Corbett CR, Kooi CD (2000) Identification of a siderophore receptor required for ferric ornibactin uptake in Burkholderia cepacia. Infect Immun 68:6554–6560

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stites SW, Plautz MW, Bailey K, O’Brien-Ladner AR, Wesselius LJ (1999) Increased concentrations of iron and isoferritins in the lower respiratory tract of patients with stable cystic fibrosis. Am J Respir Crit Care Med 160:796–801. doi:10.1164/ajrccm.160.3.9811018

    Article  CAS  PubMed  Google Scholar 

  • Tashiro Y, Ichikawa S, Nakajima-Kambe T, Uchiyama H, Nomura N (2010) Pseudomonas quinolone signal affects membrane vesicle production in not only gram-negative but also gram-positive bacteria. Microbes Environ 25:120–125

    Article  PubMed  Google Scholar 

  • Thomas MS (2007) Iron acquisition mechanisms of the Burkholderia cepacia complex. Biometals 20:431–452. doi:10.1007/s10534-006-9065-4

    Article  CAS  PubMed  Google Scholar 

  • Tomlin KL, Coll OP, Ceri H (2001) Interspecies biofilms of Pseudomonas aeruginosa and Burkholderia cepacia. Can J Microbiol 47:949–954

    Article  CAS  PubMed  Google Scholar 

  • Turi JL, Yang F, Garrick MD, Piantadosi CA, Ghio AJ (2004) The iron cycle and oxidative stress in the lung. Free Radic Biol Med 36:850–857. doi:10.1016/j.freeradbiomed.2003.12.008

    Article  CAS  PubMed  Google Scholar 

  • Vanlaere E et al (2008) Burkholderia latens sp. nov., Burkholderia diffusa sp. nov., Burkholderia arboris sp. nov., Burkholderia seminalis sp. nov. and Burkholderia metallica sp. nov., novel species within the Burkholderia cepacia complex. Int J Syst Evol Microbiol 58:1580–1590. doi:10.1099/ijs.0.65634-0

    Article  CAS  PubMed  Google Scholar 

  • Vanlaere E et al (2009) Taxon K, a complex within the Burkholderia cepacia complex, comprises at least two novel species, Burkholderia contaminans sp. nov. and Burkholderia lata sp. nov. Int J Syst Evol Microbiol 59:102–111. doi:10.1099/ijs.0.001123-0

    Article  CAS  PubMed  Google Scholar 

  • Visser MB, Majumdar S, Hani E, Sokol PA (2004) Importance of the ornibactin and pyochelin siderophore transport systems in Burkholderia cenocepacia lung infections. Infect Immun 72:2850–2857

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Weaver VB, Kolter R (2004) Burkholderia spp. alter Pseudomonas aeruginosa through iron sequestration. J Bacteriol 186:2376–2384

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Whitby PW, Vanwagoner TM, Springer JM, Morton DJ, Seale TW, Stull TL (2006) Burkholderia cenocepacia utilizes ferritin as an iron source. J Med Microbiol 55:661–668. doi:10.1099/jmm.0.46199-0

    Article  CAS  PubMed  Google Scholar 

  • Wolz C et al (1994) Iron release from transferrin by pyoverdin and elastase from Pseudomonas aeruginosa. Infect Immun 62:4021–4027

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wright C, Herbert G, Pilkington R, Callaghan M, McClean S (2010) Real-time PCR method for the quantification of Burkholderia cepacia complex attached to lung epithelial cells and inhibition of that attachment. Lett Appl Microbiol 50:500–506

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Máire Callaghan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tyrrell, J., Whelan, N., Wright, C. et al. Investigation of the multifaceted iron acquisition strategies of Burkholderia cenocepacia . Biometals 28, 367–380 (2015). https://doi.org/10.1007/s10534-015-9840-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-015-9840-1

Keywords

Navigation