Skip to main content

Advertisement

Log in

Comparative proteomic analysis of two tobacco (Nicotiana tabacum) genotypes differing in Cd tolerance

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Tobacco can easily accumulate cadmium (Cd) in leaves and thus poses a potential threat to human health. Cd-stress-hydroponic-experiments were performed, and the proteomic and transcriptional features of two contrasting tobacco genotypes Yun-yan2 (Cd-tolerant) and Guiyan1 (Cd-sensitive) were compared. We identified 18 Cd-tolerance-associated proteins in leaves, using 2-dimensional gel electrophoresis coupled with mass spectrometry, whose expression were significantly induced in Yunyan2 leaves but down-regulated/unchanged in Guiyan1, or unchanged in Yunyan2 but down-regulated in Guiyan1 under 50 µM Cd stress. They are including epoxide hydrolase, enoyl-acyl-carrier-protein reductase, NPALDP1, chlorophyll ab binding protein 25, heat shock protein 70 and 14-3-3 proteins. They categorized as 8 groups of their functions: metabolism, photosynthesis, stress response, signal transduction, protein synthesis, protein processing, transport and cell structure. Furthermore, the expression patterns of three Cd-responsive proteins were validated by quantitative real-time PCR. Our findings provide an insight into proteomic basis for Cd-detoxification in tobacco which offers molecular resource for Cd-tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahsan N, Renaut J, Komatsu S (2009) Recent developments in the application of proteomics to the analysis of plant responses to heavy metals. Proteomics 9:2602–2621

    Article  CAS  PubMed  Google Scholar 

  • Alvarez S, Berla BM, Sheffield J, Cahoon RE, Jez JM, Hicks LM (2009) Comprehensive analysis of the Brassica juncea root proteome in response to cadmium exposure by complementary proteomic approaches. Proteomics 9:2419–2431

    Article  CAS  PubMed  Google Scholar 

  • Bah AM, Sun H, Chen F, Zhou J, Dai H, Zhang G, Wu F (2010) Comparative proteomic analysis of Typha angustifolia leaf under chromium, cadmium and lead stress. J Hazard Mater 184:191–203

    Article  CAS  PubMed  Google Scholar 

  • Bovet L, Eggmann T, Meylan M, Polier J, Kammer P, Marin E, Feller U, Martinoia E (2003) Transcript levels of AtMRPs after cadmium treatment: induction of AtMRP3. Plant Cell Environ 26:371–381

    Article  CAS  Google Scholar 

  • Cai Y, Cao F, Wei K, Zhang G, Wu F (2011) Genotypic dependent effect of exogenous glutathione on Cd-induced changes in proteins, ultrastructure and antioxidant defense enzymes in rice seedlings. J Hazard Mater 192:1056–1066

    Article  CAS  PubMed  Google Scholar 

  • Carpentier SC, Witters E, Laukens K, Deckers P, Swennen R, Panis B (2005) Preparation of protein extracts from recalcitrant plant tissues: an evaluation of different methods for two-dimensional gel electrophoresis analysis. Proteomics 5:2497–2507

    Article  CAS  PubMed  Google Scholar 

  • Cuypers A, Koistinen KM, Kokko H, Kärenlampi S, Auriola S, Vangronsveld J (2005) Analysis of bean (Phaseolus vulgaris L.) proteins affected by copper stress. J Plant Physiol 162:383–392

  • Denison FC, Paul A, Zupanska AK, Ferl RJ (2011) 14-3-3 proteins in plant physiology. Semin Cell Dev Biol 22:720–727

    Article  CAS  PubMed  Google Scholar 

  • Evlard A, Sergeant K, Ferrandis S, Printz B, Renaut J, Guignard C, Paul R, Hausman J, Campanella B (2014) Physiological and proteomic responses of different willow clones (Salix fragilis X alba) exposed to dredged sediment contaminated by heavy metals. Int J Phytoremediat 16:1148–1169

    Article  CAS  Google Scholar 

  • Ezaki B, Gardner RC, Ezaki Y, Matsumoto H (2000) Expression of aluminum-induced genes in transgenic Arabidopsis plants can ameliorate aluminum stress and/or oxidative stress. Plant Physiol 122:657–666

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fagioni M, Zolla L (2009) Does the different proteomic profile found in apical and basal leaves of spinach reveal a strategy of this plant toward cadmium pollution response? J Proteome Res 8:2519–2529

    Article  CAS  PubMed  Google Scholar 

  • Fanous A, Weiss W, Görg A, Jacob F, Parlar H (2008) A proteome analysis of the cadmium and mercury response in Corynebacterium glutamicum. Proteomics 8:4976–4986

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Shigeoka S (2011) Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol 155:93–100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gallego SM, Pena LB, Barcia RA, Azpilicueta CE, Iannone MF, Rosales EP, Zawoznik MS, Groppa MD, Benavides MP (2012) Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environ Exp Bot 83:33–46

    Article  CAS  Google Scholar 

  • Gillet S, Decottignies P, Chardonnet S, Le Maréchal P (2006) Cadmium response and redoxin targets in Chlamydomonas reinhardtii: a proteomic approach. Photosynth Res 89:201–211

    Article  CAS  PubMed  Google Scholar 

  • Golia EE, Dimirkou A, Mitsios IK (2007) Accumulation of metals on tobacco leaves (primings) grown in an agricultural area in relation to soil. B Environ Contam Toxicol 79:158–162

    Article  CAS  Google Scholar 

  • Hashimoto A, Ettinger WF, Yamamoto Y, Theg SM (1997) Assembly of newly imported oxygen-evolving complex subunits in isolated chloroplasts: sites of assembly and mechanism of binding. Plant Cell 9:441–452

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hayes SA, Dice JF (1996) Roles of molecular chaperones in protein degradation. J Cell Biol 132:255–258

    Article  CAS  PubMed  Google Scholar 

  • Ignatev A, Kravchenko S, Rak A, Goody RS, Pylypenko O (2008) A structural model of the GDP dissociation inhibitor rab membrane extraction mechanism. J Biol Chem 283:18377–18384

    Article  CAS  PubMed  Google Scholar 

  • Kosová K, Vítámvás P, Prášil IT, Renaut J (2011) Plant proteome changes under abiotic stress-contribution of proteomics studies to understanding plant stress response. J Proteomics 74:1301–1322

    Article  PubMed  Google Scholar 

  • Lee K, Bae DW, Kim SH, Han HJ, Liu X, Park HC, Lim CO, Lee SY, Chung WS (2010) Comparative proteomic analysis of the short-term responses of rice roots and leaves to cadmium. J Plant Physiol 167:161–168

    Article  CAS  PubMed  Google Scholar 

  • Lionaki E, Tavernarakis N (2013) Oxidative stress and mitochondrial protein quality control in aging. J Proteomics 92:181–194

    Article  CAS  PubMed  Google Scholar 

  • Liu WX, Shang SH, FengX, Zhang GP, Wu FB (2014) Selenium reduces cadmium uptake and mitigates cadmium toxicity in the two tobacco genotypes differing in Cd tolerance. Environ Toxicol Chem, in reviewing

  • Meharg AA (1993) The role of the plasmalemma in metal tolerance in angiosperms. Physiol Plant 88:191–198

    Article  CAS  Google Scholar 

  • Michelet L, Krieger-Liszkay A (2012) Reactive oxygen intermediates produced by photosynthetic electron transport are enhanced in short-day grown plants. BBA-Bioenerg 1817:1306–1313

    Article  CAS  Google Scholar 

  • Migocka M, Papierniak A, Kosatka E, Kłobus G (2011) Comparative study of the active cadmium efflux systems operating at the plasma membrane and tonoplast of cucumber root cells. J Exp Bot: err180

  • Morris CA, Owen JR, Thomas MC, EL Hiti GA, Harwood JL, Kille P (2014) Intracellular localization and induction of a dynamic RNA-editing event of macro-algal V-ATPase subunit A (VHA-A) in response to copper. Plant Cell Environ 37:189–203

    Article  CAS  PubMed  Google Scholar 

  • Mowbray SL, Elfström LT, Ahlgren KM, Andersson CE, Widersten M (2006) X-ray structure of potato epoxide hydrolase sheds light on substrate specificity in plant enzymes. Protein Sci 15:1628–1637

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ndimba BK, Chivasa S, Simon WJ, Slabas AR (2005) Identification of Arabidopsis salt and osmotic stress responsive proteins using two-dimensional difference gel electrophoresis and mass spectrometry. Proteomics 5:4185–4196

    Article  CAS  PubMed  Google Scholar 

  • Neumann D, Lichtenberger O, Günther D, Tschiersch K, Nover L (1994) Heat-shock proteins induce heavy-metal tolerance in higher plants. Planta 194:360–367

    Article  CAS  Google Scholar 

  • Newman JW, Morisseau C, Hammock BD (2005) Epoxide hydrolases: their roles and interactions with lipid metabolism. Prog Lipid Res 44:1–51

    Article  CAS  PubMed  Google Scholar 

  • Park J, Song WY, Ko D, Eom Y, Hansen TH, Schiller M, Lee TG, Martinoia E, Lee Y (2012) The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury. Plant J 69:278–288

    Article  CAS  PubMed  Google Scholar 

  • Rensink W, Hart A, Liu J, Ouyang S, Zismann V, Buell CR (2005) Analyzing the potato abiotic stress transcriptome using expressed sequence tags. Genome 48:598–605

    Article  PubMed  Google Scholar 

  • Rodríguez-Celma J, Rellán-Álvarez R, Abadía A, Abadía J, López-Millán A (2010) Changes induced by two levels of cadmium toxicity in the 2-DE protein profile of tomato roots. J Proteomics 73:1694–1706

    Article  PubMed  Google Scholar 

  • Sanan-Mishra N, Pham XH, Sopory SK, Tuteja N (2005) Pea DNA helicase 45 overexpression in tobacco confers high salinity tolerance without affecting yield. Proc Natl Acad Sci USA 102:509–514

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sarry JE, Kuhn L, Ducruix C, Lafaye A, Junot C, Hugouvieux V, Jourdain A, Bastien O, Fievet JB, Vailhen D (2006) The early responses of Arabidopsis thaliana cells to cadmium exposure explored by protein and metabolite profiling analyses. Proteomics 6:2180–2198

    Article  CAS  PubMed  Google Scholar 

  • Schneider T, Schellenberg M, Meyer S, Keller F, Gehrig P, Riedel K, Lee Y, Eberl L, Martinoia E (2009) Quantitative detection of changes in the leaf-mesophyll tonoplast proteome in dependency of a cadmium exposure of barley (Hordeum vulgare L.) plants. Proteomics 9:2668–2677

    Article  CAS  PubMed  Google Scholar 

  • Sharma R, Sharma A, Fujimura T, Machii H (2001) Stress-responsive enhanced expression of mitochondrial processing peptidase gene after UV exposure in mulberry. Plant Sci 161:807–812

    Article  CAS  Google Scholar 

  • Vashisht AA, Tuteja N (2006) Stress responsive DEAD-box helicases: a new pathway to engineer plant stress tolerance. J Photochem Photobiol B 84:150–160

    Article  CAS  PubMed  Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Mechanisms to cope with arsenic or cadmium excess in plants. Curr Opin Plant Biol 12:364–372

    Article  CAS  PubMed  Google Scholar 

  • Wickner S, Gottesman S, Skowyra D, Hoskins J, McKenney K, Maurizi MR (1994) A molecular chaperone, ClpA, functions like DnaK and DnaJ. Proc Natl Acad Sci USA 91:12218–12222

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wojtyla Ł, Kosmala A, Garnczarska M (2013) Lupine embryo axes under salinity stress. II. Mitochondrial proteome response. Acta Physiol Plant 35:2383–2392

    Article  CAS  Google Scholar 

  • Wu FB, Zhang G, Yu J (2003) Interaction of cadmium and four microelements for uptake and translocation in different barley genotypes. Commun Soil Sci Plant Anal 34:2003–2020

  • Wu FB, Wu H, Zhang G, Bachir DML (2004) Difference in growth and yield in response to cadmium toxicity in cotton genotypes. J Plant Nutr Soil Sci 167:85–90

  • Xia Y, Ning Z, Bai G, Li R, Yan G, Siddique KH, Baum M, Guo P (2012) Allelic variations of a light harvesting chlorophyll a/b-binding protein gene (Lhcb1) associated with agronomic traits in barley. PLos One 7:e37573

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamada S, Komori T, Hashimoto A, Kuwata S, Imaseki H, Kubo T (2000) Differential expression of plastidic aldolase genes in Nicotiana plants under salt stress. Plant Sci 154:61–69

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Li H, Guo D, Tian W, Peng S (2012) Molecular characterization of a novel 14-3-3 protein gene (Hb14-3-3c) from Hevea brasiliensis. Mol Biol Rep 39:4491–4497

    Article  CAS  PubMed  Google Scholar 

  • Zhu QH, Huang DY, Liu SL, Luo ZC, Rao ZX, Cao XL, Ren XF (2013) Accumulation and subcellular distribution of cadmium in ramie (Boehmeria nivea L. Gaud.) planted on elevated soil cadmium contents. Plant Soil Environ 2:57–61

    Google Scholar 

Download references

Acknowledgments

We are thankful for the financial support from Guizhou Tobacco Science Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feibo Wu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2025 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, L., He, X., Shang, S. et al. Comparative proteomic analysis of two tobacco (Nicotiana tabacum) genotypes differing in Cd tolerance. Biometals 27, 1277–1289 (2014). https://doi.org/10.1007/s10534-014-9789-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-014-9789-5

Keywords

Navigation