Skip to main content
Log in

Strontium ranelate stimulates the activity of bone-specific alkaline phosphatase: interaction with Zn2+ and Mg2+

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Strontium ranelate (SR) is an orally administered and bone-targeting anti-osteoporotic agent that increases osteoblast-mediated bone formation while decreasing osteoclastic bone resorption, and thus reduces the risk of vertebral and femoral bone fractures in postmenopausal women with osteoporosis. Osteoblastic alkaline phosphatase (ALP) is a key enzyme involved in the process of bone formation and osteoid mineralization. In this study we investigated the direct effect of strontium (SR and SrCl2) on the activity of ALP obtained from UMR106 osteosarcoma cells, as well as its possible interactions with the divalent cations Zn2+ and Mg2+. In the presence of Mg2+, both SR and SrCl2 (0.05–0.5 mM) significantly increased ALP activity (15–66 % above basal), and this was dose-dependent in the case of SR. The stimulatory effect of strontium disappeared in the absence of Mg2+. The cofactor Zn2+ also increased ALP activity (an effect that reached a plateau at 2 mM), and co-incubation of 2 mM Zn2+ with 0.05–0.5 mM SR showed an additive effect on ALP activity stimulation. SR induced a dose-dependent decrease in the Km of ALP (and thus an increase in affinity for its substrate) with a maximal effect at 0.1 mM. Co-incubation with 2 mM Zn2+ further decreased Km in all cases. These direct effects of SR on osteoblastic ALP activity could be indicating an alternative mechanism by which this compound may regulate bone matrix mineralization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson RA, Bosron WF, Kennedy FS, Vallee BL (1975) Role of magnesium in Escherichia coli alkaline phosphatase. Proc Natl Acad Sci USA. 72:2989–2993

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barbara A, Delannoy P, Denis BG, Marie PJ (2004) Normal matrix mineralization induced by strontium ranelate in MC3T3-E1 osteogenic cells. Metabolism 53:532–537

    Article  CAS  PubMed  Google Scholar 

  • Bosron WF, Anderson RA, Falk MC, Kenedy FS, Vallee BL (1977) Effect of magnesium on the properties of zinc alkaline phosphatase. Biochemistry 16:610–614

    Article  CAS  PubMed  Google Scholar 

  • Broyles LD, Nielsen RG, Bussett EM, Douglas LuW, Mizrahi IA, Nunnelly PA, Ngo TA, Noell J, Christenson RH, Kress BC (1998) Analytical and clinical performance characteristics of tandem-MP ostase, a new immunoassay for serum bone alkaline phosphatase. Clin Chem 44:2139–2147

    CAS  PubMed  Google Scholar 

  • Caudrillier A, Hurtel-Lemaire AS, Wattel A, Cournarie F, Godin C, Petit L, Petit JP, Terwilliger E, Kamel S, Brown EM, Mentaverri R, Brazier M (2010) Strontium ranelate decreases receptor activator of nuclear factor-κB ligand-induced osteoclastic differentiation In vitro: involvement of the calcium-sensing receptor. Mol Pharmacol 78:569–576

    Article  CAS  PubMed  Google Scholar 

  • Dahl SG, Allain P, Marie PJ, Mauras Y, Boivin G, Ammann P, Tsouderos Y, Delmas PD, Christiansen C (2001) Incorporation and distribution of strontium in bone. Bone 28:446–453

    Article  CAS  PubMed  Google Scholar 

  • Farley JR, Hall SL, Ilacas D, Orcutt C, Miller BE, Hill CS, Baylink DJ (1994) Quantification of skeletal alkaline phosphatase in osteoporotic serum by wheat germ agglutinin precipitation, heat inactivation, and a two-site immunoradiometric assay. Clin Chem 40:1749–1756

    CAS  PubMed  Google Scholar 

  • Fernandez JM, Schurman L, Sedlinsky C, Molinuevo MS, Cortizo AM, McCarthy AD (2010) El ranelato de estroncio revierte los efectos deletéreos causados por los AGE sobre osteoblastos en cultivo. Rol de los canales de calcio. Medicina 70:139

    Google Scholar 

  • Fernandez JM, Molinuevo MS, Sedlinsky C, Schurman L, Cortizo AM, McCarthy AD (2013) Strontium ranelate prevents the deleterious action of advanced glycation endproducts on osteoblastic cells via calcium channel activation. Eur J Pharmacol 706:41–47

    Article  CAS  PubMed  Google Scholar 

  • Fielding GA, Roy M, Bandyopadhyay A, Bose S (2012) Antibacterial and biological characteristics of silver containing and strontium doped plasma sprayed hydroxyapatite coatings. Acta Biomater 8:3144–3152

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fuchs RK, Allen MR, Condon KW, Reinwald S, Miller LM, McClenathan D, Keck B, Phipps RJ, Burr DB (2008) Calculating clinically relevant drug doses to use in animal studies. Osteoporos Int 19:1815–1817

    Article  Google Scholar 

  • Llinas P, Masella M, Stigbrand T, Ménez A, Stura EA, Le Du MH (2006) Structural studies of human alkaline phosphatase in complex with strontium: implication for its secondary effect in bones. Protein Sci 15:1691–1700

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marie PJ (2008) Effective doses for strontium ranelate. Osteoporos Int 19:1813

    Article  CAS  PubMed  Google Scholar 

  • McCarthy AD, Cortizo AM, Gimenez Segura G, Bruzzone L, Etcheverry SB (1998) Non-enzymatic glycosylation of alkaline phosphatase alters its biological. Mol Cell Biochem 181:63–69

    Article  CAS  PubMed  Google Scholar 

  • Meunier PJ, Roux C, Seeman E, Ortolani S, Badurski JE, Spector TD, Cannata J, Balogh A, Lemmel EM, Pors-Nielsen S, Rizzoli R, Genant HK, Reginster JY (2004) The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N Engl J Med 350:459–468

    Article  CAS  PubMed  Google Scholar 

  • Pemmer B, Hofstaetter JG, Meirer F, Smolek S, Wobrauschek P, Simon R, Fuchs RK, Allen MR, Condon KW, Reinwald S, Phipps RJ, Burr DB, Paschalis EP, Klaushofer K, Streli C, Roschger P (2011) Increased strontium uptake in trabecular bone of ovariectomized calcium-deficient rats treated with strontium ranelate or strontium chloride. J Synchrotron Radiat 18:835–841

    Article  CAS  PubMed  Google Scholar 

  • Puche RC, Caferra DA, Rossilo I (1988) Bone isoenzyme of serum alkaline phosphatase measured with wheat-germ agglutinin. Clin Chem 34:1372–1375

    CAS  PubMed  Google Scholar 

  • Reginster JY, Seeman E, De Vernejoul MC, Adami S, Compston J, Phenekos C, Devogelaer JP, Curiel MD, Sawicki A, Goemaere S, Sorensen OH, Felsenberg D, Meunier PJ (2005) Strontium ranelate reduces the risk of nonvertebral fractures in postmenopausal women with osteoporosis: treatment of peripheral osteoporosis (TROPOS) study. J Clin Endocrinol Metab 90:2816–2822

    Article  CAS  PubMed  Google Scholar 

  • Roschger P, Manjubala I, Zoeger N, Meirer F, Simon R, Li C, Fratzl-Zelman N, Misof BM, Paschalis EP, Streli C, Fratzl P, Klaushofer K (2010) Bone material quality in transiliac bone biopsies of postmenopausal osteoporotic women after 3 years of strontium ranelate treatment. J Bone Miner Res 25:891–900

    Article  PubMed  Google Scholar 

  • Saidak Z, Marie PJ (2012) Strontium signaling: molecular mechanisms and therapeutic implications in osteoporosis. Pharmacol Ther 136:216–226

    Article  CAS  PubMed  Google Scholar 

  • Takaoka S, Yamaguchi T, Yano S, Yamauchi M, Sugimoto T (2010) The calcium-sensing receptor (CaR) is involved in strontium ranelate-induced osteoblast differentiation and mineralization. Horm Metab Res 42:627–631

    Article  CAS  PubMed  Google Scholar 

  • Vaisman DN, McCarthy AD, Cortizo AM (2005) Bone-specific alkaline phosphatase activity is inhibited by bisphosphonates. Biol Trace Elem Res 104:131–140

    Article  CAS  PubMed  Google Scholar 

  • Van Hoof VO, De Broe ME (1994) Interpretation and clinical significance of alkaline phosphatase isoenzyme patterns. Crit Rev Clin Lab Sci 31:197–293

    Article  PubMed  Google Scholar 

  • Whyte MP (1994) Hypophosphatasia and the role of alkaline phosphatase in skeletal mineralization. Endocr Rev 15:439–461

    CAS  PubMed  Google Scholar 

  • Yamaguchi M, Weitzmann MN (2012) The intact strontium ranelate complex stimulates osteoblastogenesis and suppresses osteoclastogenesis by antagonizing NF-κB activation. Mol Cell Biochem 359:399–407

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank Servier, Argentina for their generous donation of strontium ranelate. This work was partially supported by grants from Universidad Nacional de La Plata, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CICPBA) and Agencia (PICT1083). JMF is Postdoctoral Fellow of CONICET; MSM is Investigador Adjunto of CONICET, Argentina; ADM is a part-time Researcher and Professor of UNLP and AMC is a member of the Carrera del Investigador, CICPBA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Manuel Fernández.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández, J.M., Molinuevo, M.S., McCarthy, A.D. et al. Strontium ranelate stimulates the activity of bone-specific alkaline phosphatase: interaction with Zn2+ and Mg2+ . Biometals 27, 601–607 (2014). https://doi.org/10.1007/s10534-014-9733-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-014-9733-8

Keywords

Navigation