Skip to main content
Log in

Biological and cytoselective anticancer properties of copper(II)-polypyridyl complexes modulated by auxiliary methylated glycine ligand

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

A series of ternary copper(II)-1,10-phenanthroline complexes with glycine and methylated glycine derivatives, [Cu(phen)(aa)(H2O)]NO3·xH2O 14 (amino acid (aa): glycine (gly), 1; dl-alanine (dl-ala), 2; 2,2-dimethylglycine (C-dmg), 3; sarcosine (sar), 4), were synthesized and characterized by FTIR, elemental analysis, electrospray ionization–mass spectra (ESI–MS), UV–visible spectroscopy and molar conductivity measurement. The determined X-ray crystallographic structures of 2 and 3 show each to consist of distorted square pyramidal [Cu(phen)(aa)(H2O)]+ cation, a nitrate counter anion, and with or without lattice water, similar to previously reported structure of [Cu(phen)(gly)(H2O)]NO3·1½H2O. It is found that 14 exist as 1:1 electrolytes in aqueous solution, and the cationic copper(II) complexes are at least stable up to 24 h. Positive-ion ESI–MS spectra show existence of only undissociated [Cu(phen)(aa)]+ species. Electron paramagnetic resonance, gel electrophoresis, fluorescence quenching, and restriction enzyme inhibition assay were used to study the binding interaction, binding affinity and selectivity of these complexes for various types of B-form DNA duplexes and G-quadruplex. All complexes can bind selectively to DNA by intercalation and electrostatic forces, and inhibit topoisomerase I. The effect of the methyl substituents of the coordinated amino acid in the above complexes on these biological properties are presented and discussed. The IC50 values (24 h) of 14 for nasopharyngeal cancer cell line HK1 are in the range 2.2–5.2 μM while the corresponding values for normal cell line NP69 are greater than 13.0 μM. All complexes, at 5 μM, induced 41–60 % apoptotic cell death in HK1 cells but no significant cell death in NP69 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adams J (2004) The proteasome: a suitable antineoplastic target. Nat Rev Cancer 4:349–360

    Article  PubMed  CAS  Google Scholar 

  • Arimondo PB, Thomas CJ, Oussedik K, Baldeyrou B, Mahieu C, Halby L, Guianvarc’h D, Lansiaux A, Hecht SM, Bailly C, Giovannangeli C (2006) Exploring the cellular activity of camptothecin-triple-helix-forming oligonucleotide conjugates. Mol Cell Biol 26:324–333

    Article  PubMed  CAS  Google Scholar 

  • Arjmand F, Muddassir M (2010) Design and synthesis of heterobimetallic topoisomerase I and II inhibitor complexes: in vitro DNA binding, interaction with 5′-GMP and 5′-TMP and cleavage studies. J Photochem Photobiol B 101:37–46

    Article  PubMed  CAS  Google Scholar 

  • Beretta GL, Perego P, Zunino F (2008) Targeting topoisomerase I: molecular mechanisms and cellular determinants of response to topoisomerase I inhibitors. Expert Opin Ther Targets 12:1243–1256

    Article  PubMed  CAS  Google Scholar 

  • Bolos C, Christidis PC, Will G, Wiehl L (1996) Synthesis and characterisation of Cu(II) complexes with the 2-acetamido-N-(4-methyl-2-thiazolyl) (amtz) ligand. The crystal structure of [Cu(amtz)2H2O](NO3)2. Inorg Chim Acta 248:209–213

    Article  CAS  Google Scholar 

  • Borger DL, Fink BE, Bruette SR, Tse WC, Hedrick MP (2001) A simple, high-resolution method for establishing DNA binding affinity and sequence selectivity. J Am Chem Soc 123:5878–5891

    Article  Google Scholar 

  • Bruker (2009) APEX2, SAINT and SADABS. Bruker AXS Inc, Madison

    Google Scholar 

  • Capranico G, Binaschi M, Borgnetto ME, Zunino F, Palumbo M (1997) A protein-mediated mechanism for the DNA sequence-specific action of topoisomerase II poisons. Trends Pharmacol Sci 18:323–329

    PubMed  CAS  Google Scholar 

  • Chashoo G, Singh SK, Sharma PR, Mondhe DM, Hamid A, Saxena A, Andotra SS, Shah BA, Qazi NA, Taneja SC, Saxena AK (2011) A propionyloxy derivative of 11-keto-β-boswellic acid induces apoptosis in HL-60 cells mediated through topoisomerase I & II inhibition. Chem-Biol Interact 189:60–71

    Article  PubMed  CAS  Google Scholar 

  • Chen CH, Sigman DS (1986) Nuclease activity of 1,10-phenanthroline-copper sequence-specific targeting. Proc Natl Acad Sci USA 83:7147–7151

    Article  PubMed  CAS  Google Scholar 

  • Chikira M (2008) DNA-fiber EPR spectroscopy as a tool to study DNA–metal complex interactions: DNA binding of hydrated Cu(II) ions and Cu(II) complexes of amino acids and peptides. J Inorg Biochem 102:1016–1024

    Article  PubMed  CAS  Google Scholar 

  • Chikira M, Inoue M, Nagane R, Harada W, Shindo H (1997) How amino acids control the binding of Cu(II) ions to DNA (II): Effect of basic amino acid residues and the chirality on the orientation of the complexes. J Inorg Biochem 66:131–139

    Article  PubMed  CAS  Google Scholar 

  • Chikira M, Tomizawa YM, Fukita D, Sugizaki T, Sugawara N, Yamazaki T, Sasano A, Shindo H, Palaniandavar M, Antholine WE (2002) DNA-fiber EPR study of the orientation of Cu(II) complexes of 1,10-phenanthroline and its derivatives bound to DNA: mono(phenanthroline)-copper(II) and its ternary complexes with amino acids. J Inorg Biochem 89:163–173

    Article  PubMed  CAS  Google Scholar 

  • Chuang N-N, Lin C-L, Chen H-K (1996) Modification of DNA topoisomerase I enzymatic activity with phosphotyrosyl protein phosphatase and alkaline phosphatase from the hepatopancreas of the shrimp Penaeus japonicus (Crustacea: Decapoda). Comp Biochem Physiol 114B:145–151

    CAS  Google Scholar 

  • Daniel KG, Gupta P, Harbach RH, Guida WC, Ping Dou Q (2004) Organic copper complexes as a new class of proteasome inhibitors and apoptosis inducers in human cancer cells. Biochem Pharm 67:1139–1151

    Article  PubMed  CAS  Google Scholar 

  • Eriksson M, Leijon M, Hiort C, Norden B, Grasuland A (1994) Binding of Δ- and Λ-[Ru(phen)3]2+ to [d(CGCGATCGCG)]2 studied by NMR. Biochemistry 33:5031–5040

    Article  PubMed  CAS  Google Scholar 

  • Erkkila KE, Odom DT, Barton JK (1999) Recognition and reaction of metallointercalators with DNA. Chem Rev 99:2777–2796

    Article  PubMed  CAS  Google Scholar 

  • Francois JC, Saison-Behmoaras T, Chassignol M, Thuong NT, Helene C (1989) Sequence-targeted cleavage of single- and double-stranded DNA by oligothymidylates covalently linked to 1,10-phenanthroline. J Biol Chem 264:5891–5898

    PubMed  CAS  Google Scholar 

  • Franklin CA, Fry JV, Collins JG (1996) NMR evidence for sequence-specific DNA minor groove binding by bis(ethylenediamine)platinum(II). Inorg Chem 35:7541–7545

    Article  CAS  Google Scholar 

  • Gallori E, Vettori C, Alessio E, Vilchez FG, Vilaplana R, Orioli P, Casini A, Messori L (2000) DNA as a possible target for antitumor ruthenium(III) complexes: a spectroscopic and molecular biology study of the interactions of two representative antineoplastic ruthenium(III) complexes with DNA. Arch Biochem Biophys 376:156–162

    Article  PubMed  CAS  Google Scholar 

  • Gan J-H, Sheng J, Huang Z (2011) Chemical and structural biology of nucleic acids and protein-nucleic acid complexes for novel drug discovery. Sci China Chem 54:3–23

    Article  CAS  Google Scholar 

  • Gao F, Chao H, Zhou F, Chen X, Wei Y-F, Ji L-N (2008) Synthesis, GC selective DNA binding and topoisomerase II inhibition activities of ruthenium(II) polypyridyl complex containing 11-aminopteridino[6,7-f][1,10]phenanthrolin-13(12H)-one. J Inorg Biochem 102:1050–1059

    Article  PubMed  CAS  Google Scholar 

  • Gouveris P, Skopelitis E, Tsavaris N (2010) DNA replication—current advances. In: Seligmann H (ed) Topoisomeras I and II expression in recurrent colorectal cancer cells: a dubious matter. ISBN: 978-953-307-593-8, InTech

  • Halder P, Zangrando E (2010) Copper(II) α-hydroxycarboxylate complexes of bis(2-pyridylcarbonyl)amine: from mononuclear complex to one-dimensional coordination polymer. Polyhedron 29:434–440

    Google Scholar 

  • Ikotun OF, Higbee EM, Ouellette W, Doyle RP (2009) Pyrophosphate-bridged complexes with picomolar toxicity. J Inorg Biochem 103:1254–1264

    Article  PubMed  CAS  Google Scholar 

  • Kikuta E, Matsubara R, Katsube N, Koike T, Kimura E (2000) Selective recognition of consecutive G sequence in double-stranded DNA by a zinc(II)–macrocyclic tetraamine complex appended with an anthraquinone. J Inorg Biochem 82:239–249

    Article  PubMed  CAS  Google Scholar 

  • Kostova I (2006) Platinum complexes as anticancer agents: recent patents on anti-drugs. Cancer Drug Discov 1:1–22

    CAS  Google Scholar 

  • Krotz AH, Kuo LY, Shields TP, Barton JK (1993) DNA recognition by rhodium(III) polyamine intercalators: considerations of hydrogen bonding and van der Waals interactions. J Am Chem Soc 115:3877–3882

    Article  CAS  Google Scholar 

  • Kumar Singh S, Joshi S, Ranjan Singh A, Saxena JK, Pandey DS (2007) DNA binding and topoisomerase II inhibitory activity of water-soluble ruthenium(II) and rhodium(III) complexes. Inorg Chem 46:10869–10876

    Article  Google Scholar 

  • Meistermann I, Moreno V, Prieto MJ, Moldrheim E, Sletten E, Khalid S, Rodger PM, Peberdy JC, Isaac CJ, Rodger A, Hannon MJ (2002) Intramolecular DNA coiling mediated by metallo-supramolecular cylinders: differential binding of P and M helical enantiomers. Proc Natl Acad Sci USA 99:5069–5074

    Article  PubMed  CAS  Google Scholar 

  • Mestre B, Pitié M, Loup C, Claparols C, Pratviel G, Meunier B (1997) Influence of the nature of the porphyrin ligand on the nuclease activity of metalloporphyrin-oligonucleotide conjugates designed with cationic, hydrophobic or anionic metalloporphyrins. Nucl Acids Res 25:1022–1027

    Article  PubMed  CAS  Google Scholar 

  • Miller KM, Rodriguez R (2011) G-quadruplexes: selective DNA targeting for cancer therapeutics. Expert Rev Clin Pharmacol 4:139–142

    Article  PubMed  CAS  Google Scholar 

  • Monchaud D, Allain C, Bertrand H, Smargiasso N, Rosu F, Gabelica V, De Cian A, Mergny J-L, Teulade-Fichou M-P (2008) Ligands playing musical chairs with G-quadruplex DNA: a rapid and simple displacement assay for identifying selective G-quadruplex binders. Biochimie 90:1207–1223

    Article  PubMed  CAS  Google Scholar 

  • Nagesh N, Krishnaiah A (2003) A comparative study on the interaction of acridine and synthetic bis-acridine with G-quadruplex structure. J Biochem Biophys Methods 57:65–74

    Article  PubMed  CAS  Google Scholar 

  • Nakabayashi Y, Iwamoto N, Inada H, Yamauchi O (2006) DNA-binding properties of flexible diamine bridged dinuclear ruthenium(II)-2,2′-bipyridine complexes. Inorg Chem Commun 9:1033–1036

    Article  CAS  Google Scholar 

  • Neidle S (2010) Human telomeric G-quadruplex: the current status of telomeric G-quadruplexes as therapeutic targets in human cancer. FEBS J 277:1118–1125

    Article  PubMed  CAS  Google Scholar 

  • Patra AK, Bhowmick T, Ramakumar S, Chakravarty AR (2007) Metal-based netropsin mimics showing AT-selective DNA binding and DNA cleavage activity at red light. Inorg Chem 46:9030–9032

    Article  PubMed  CAS  Google Scholar 

  • Pommier Y (2006) Topoisomerase I inhibitors: camptothecins and beyond. Nat Rev Cancer 6:789–802

    Article  PubMed  CAS  Google Scholar 

  • Rajendiran V, Murali M, Suresh E, Palaniandavar M, Periasamy VS, Akbarsha MA (2008) Non-covalent DNA binding and cytotoxicity of certain mixed-ligand ruthenium(II) complexes of 2,2′-dipyridylamine and diimines. Dalton Trans 16:2157–2170

    Article  PubMed  Google Scholar 

  • Rajendran A, Nair BU (2006) Unprecedented dual binding behaviour of acridine group of dye: a combined experimental and theoretical investigation for the development of anticancer chemotherapeutic agents. Biochim Biophys Acta 1760:1794–1801

    Article  PubMed  CAS  Google Scholar 

  • Rao VA, Agama K, Holbeck S, Pommier Y, Batracylin (NSC 320846) (2007) A dual inhibitor of DNA topoisomerases I and II induces histone gamma-H2AX as a biomarker of DNA damage. Cancer Res 67:9971–9979

    Google Scholar 

  • Reichmann RE, Rice SA, Thomas CA, Doty P (1954) A further examination of the molecular weight of desoxypentose nucleic acid. J Am Chem Soc 76:3047–3053

    Article  CAS  Google Scholar 

  • Rothenberg ML (1997) Topoisomerase I inhibitors: review and update. Ann Oncol 8:837–855

    Article  PubMed  CAS  Google Scholar 

  • Ruíz P, Ortiz R, Perelló L, Alzuet G, González-Álvarez M, Liu-González M, Sanz-Ruíz F (2007) Synthesis, structure and nuclease properties of several binary and ternary complexes of copper(II) with norfloxacin and 1,10-phenanthroline. J Biol Inorg Chem 101:831–840

    Google Scholar 

  • Rupesh KR, Deepalatha S, Krishnaveni M, Venkatesan R, Jayachandran S (2006) Synthesis, characterization and in vitro biological activity studies of Cu–M (M = Cu2+, Co2+, Ni2+, Mn2+, Zn2+) bimetallic complexes. Eur J Med Chem 41:1494–1503

    Article  PubMed  CAS  Google Scholar 

  • Seng HL (2010) Duplex and G-quadruplex DNA binding, nucleolytic property and topoisomerase I inhibition by different series of metal(II) complexes. Dissertation, Universiti Tunku Abdul Rahman, Kampar

  • Seng HL, Von ST, Tan KW, Maah MJ, Ng SW, Raja Abd Rahman RNZ, Caracelli I, Ng CH (2009) Crystal structure, DNA binding studies, nucleolytic property and topoisomerase I inhibition of zinc complex with 1,10-phenanthroline and 3-methyl-picolinic acid. Biometals 23:99–118

    Article  PubMed  Google Scholar 

  • Sheldrick GM (1996) SADABS. University of Göttingen, Germany

    Google Scholar 

  • Sheldrick GM (1997a) SHELXS 97 program for crystal structure solution. University of Göttingen, Göttingen

    Google Scholar 

  • Sheldrick GM (1997b) SHELXL-97 program for crystal structure refinement. University of Göttingen, Göttingen

    Google Scholar 

  • Sheldrick GM (2008) A short history of SHELX. Acta Cryst A 64:112

    Article  Google Scholar 

  • Sitlani A, Barton JK (1994) Sequence-specific recognition of DNA by phenanthrenequinone diimine complexes of rhodium(III): importance of steric and van der Waals interactions. Biochemistry 33:12100–12108

    Article  PubMed  CAS  Google Scholar 

  • Sitlani A, Dupureur CM, Barton JK (1993) Enantiospecific palindromic recognition of 5′-d(CTCTAGAG)-3′ by a novel rhodium intercalator:analogies to a DNA-binding protein. J Am Chem Soc 115:12589–12590

    Article  CAS  Google Scholar 

  • Snow AM, Sheardy RD (2001) Locating cobalt-binding sites on DNA using restriction endonucleases. Methods Enzymol 340:519–528

    Article  PubMed  CAS  Google Scholar 

  • Souza V, Dong YB, Zhou HS, Zacharias W, McMasters KM (2005) SW-620 cells treated with topoisomerase I inhibitor SN-38: gene expression profiling. J Transl Med 44:1–7

    Google Scholar 

  • Sunami S, Nishimura T, Nishimura I, Ito S, Arakawa H, Ohkubo M (2009) Synthesis and biological activities of topoisomerase I inhibitors, 6-arylmethylamino analogues of edotecarin. J Med Chem 52:3225–3237

    Article  PubMed  CAS  Google Scholar 

  • Sung FL, Poon TCW, Hui EP, Ma BBY, Liong E, To KF, Huang DPWS, Chan ATC (2005) Antitumor effect and enhancement of cytotoxic drug activity by cetuximab in nasopharyngeal carcinoma cells. In Vivo 19:237–246

    PubMed  CAS  Google Scholar 

  • Tan KW, Ng CH, Mohd Jamil M, Ng SW (2008) Chlorido(2-methyl-4-oxo-4H-pyran-3-olato-κ2 O 3,O 4)(1,10-phenanthroline-κ2 N,N′)copper(II). Acta Cryst E64:m1104

    CAS  Google Scholar 

  • Tan J, Jun L, Wang B (2010) From GC-rich DNA binding to the repression of survivin gene for quercetin nickel(II) complex: implications for cancer therapy. Biometals 23:1075–1084

    Article  PubMed  CAS  Google Scholar 

  • Teicher BA (2008) Next generation topoisomerase I inhibitors: rationale and biomarker strategies. Biochem Pharmacol 75:1262–1271

    Article  PubMed  CAS  Google Scholar 

  • To YF, Raymond Sun W-Y, Chen Y, Vera Chan S-F, Yu W-Y, Paul Tam K-H, Che C-M, Steve Lin C-L (2009) Gold(III) porphyrin complex is more potent than cisplatin in inhibiting growth of nasopharyngeal carcinoma in vitro and in vivo. Int J Cancer 124:1971–1979

    Article  PubMed  CAS  Google Scholar 

  • Vermorken JB, Trigo J, Hitt R, Koralewski P, Diaz-Rubio E, Rolland F, Knecht R, Amellal N, Schueler A, Baselga J (2007) Open label, uncontrolled, multicenter phase II study to evaluate the efficacy and toxicity of cetuximab as a single agent in patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck who failed to respond to platinum-based therapy. J Clin Oncol 25:2171–2177

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Wang L-K, Kinsbury WD, Johnson RK, Hecht SM (1998) Differential effects of camptothecin derivatives on topoisomerase I-mediated DNA structure modification. Biochemistry 37:9399–9408

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, He Q-Y, Che C-M, Chiu J-F (2006) Proteomic characterization of cytotoxic mechanism of gold(III) porphyrin 1a, a potential anticancer drug. Proteomics 6:131–142

    Article  PubMed  Google Scholar 

  • Webb MR, Ebeler SE (2008) Anthocyanin interactions with DNA: intercalation topoisomerase I inhibition and oxidative reactions. J Food Biochem 32:576–596

    Article  PubMed  CAS  Google Scholar 

  • Wheate NJ, Collins JG (2000) A 1H NMR study of the oligonucleotide binding of [(en)Pt(μ-dpzm)2Pt(en)]Cl4. J Inorg Biochem 78:313–320

    Article  PubMed  CAS  Google Scholar 

  • Wu XJ, Hua X (2007) Selective killing of cancer cells by a cruciferous vegetable derived pro-oxidant compound. Cancer Biol Ther 6:646–647

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Chen H, Yang P, Xiong Z (2005) Racemic d,l-[Co(phen)2dpq]3+–DNA interactions: investigation into the basis for minor-groove binding and recognition. J Inorg Biochem 99:1126–1134

    Article  PubMed  CAS  Google Scholar 

  • Xu L, Liao G-L, Chen X, Zhao C-Y, Chao H, Ji L-N (2010) Trinuclear Ru(II) polypyridyl complexes as human telomeric quadruplex DNA stabilizers. Inorg Chem Commun 13:1050–1053

    Article  CAS  Google Scholar 

  • Zeglis BM, Pierre VC, Barton JK (2007) Metallo-intercalators and metallo-insertors. Chem Commun 44:4565–4579

    Article  Google Scholar 

  • Zhai S, Yang L, Cindy Cui Q, Sun Y, Ping Dou Q, Yan B (2010) Tumor cellular proteasome inhibition and growth suppression by 8-hydroxyquinoline and clioquinol requires their capabilities to bind copper and transport copper into cells. J Biol Inorg Chem 15:259–269

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Zhou J (2008) Ternary copper(II) complex of 1,10-phenanthroline and l-glycine: crystal structure and interaction with DNA. J Coord Chem 61:2488–2498

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by MOSTI eScience grant (02-02-SF0033). We also thank the Director General of Health Malaysia for his permission to publish this article and the Director of the Institute for Medical Research for her support. Makoto Chikira acknowledges financial support from Grant-in-Aid for Science Research (No. 21550070) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. Statistical analysis on apoptosis data was done by Lee How Chinh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chew-Hee Ng.

Additional information

Malaysian Patent No PI 2012700421.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 860 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seng, HL., Wang, WS., Kong, SM. et al. Biological and cytoselective anticancer properties of copper(II)-polypyridyl complexes modulated by auxiliary methylated glycine ligand. Biometals 25, 1061–1081 (2012). https://doi.org/10.1007/s10534-012-9572-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-012-9572-4

Keywords

Navigation