Skip to main content
Log in

Utilization of microbial iron assimilation processes for the development of new antibiotics and inspiration for the design of new anticancer agents

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Pathogenic microbes rapidly develop resistance to antibiotics. To keep ahead in the “microbial war”, extensive interdisciplinary research is needed. A primary cause of drug resistance is the overuse of antibiotics that can result in alteration of microbial permeability, alteration of drug target binding sites, induction of enzymes that destroy antibiotics (ie., beta-lactamase) and even induction of efflux mechanisms. A combination of chemical syntheses, microbiological and biochemical studies demonstrate that the known critical dependence of iron assimilation by microbes for growth and virulence can be exploited for the development of new approaches to antibiotic therapy. Iron recognition and active transport relies on the biosyntheses and use of microbe-selective iron-chelating compounds called siderophores. Our studies, and those of others, demonstrate that siderophores and analogs can be used for iron transport-mediated drug delivery (“Trojan Horse” antibiotics) and induction of iron limitation/starvation (Development of new agents to block iron assimilation). Recent extensions of the use of siderophores for the development of novel potent and selective anticancer agents are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Barclay R, Ratledge C (1983) Iron-binding compounds of Mycobacterium avium, M. intracellulare, M. scrofulaceum, and mycobactin-dependent M. paratuberculosis and M. avium. J Bacteriol 53:1138–1146

    Google Scholar 

  • Benz G (1984) Albomycine, I. Enzymatische Spaltung der Desferriform der Albomycine. Liebigs Ann Chem 1399–1407. doi:10.1002/jlac.198419840802

  • Benz G, Schmidt D (1984) Albomycins, 4. Isolation and total synthesis of (N-5-acetyl-N-5-hydroxy-L-Ornithyl). Liebigs Ann Chem 1434–1440. doi:10.1002/jlac.198419840805

  • Benz G, Schroder T, Kurz J, Wunsche C, Karl W, Steffens G, Pfitzner J, Schmidt D (1982) Konstitution der Desferriform der Albomycine. Angew Chem Suppl 1322–1335

  • Benz G, Born L, Briedan M, Grosser R, Kurz J, Paulsen H, Sinnwell V, Weber B (1984) Albomycins, II. Absolute Konfiguration der Desferriform der Albomycine. Liebigs Ann Chem 1408–1423. doi:10.1002/jlac.198419840803

  • Bosne-David S, Bricard L, Ramiandrasoa FDéRoussent A, Kunesh G, Andremont A (1997) Evaluation of growth promotion and inhibition from Mycobactins and nonmycobacterial Siderophores (Desferrioxamine and FR160) in Mycobacterium aurum. Antimicrob Agents Chemother 41:1837–1839

    PubMed  CAS  Google Scholar 

  • Braun V, Endriß F (2007) Energy-coupled outer membrane transport proteins and regulatory proteins. Biometals 20:219–231. doi:10.1007/s10534-006-9072-5

    Article  PubMed  CAS  Google Scholar 

  • Braun V, Günthner K, Hantke K, Zimmermann L (1983) Intracellular activation of albomycin in Escherichia coli and Salmonella typhimurium. J Bacteriol 156:308–315

    PubMed  CAS  Google Scholar 

  • Brochu A, Brochu N, Nicas TI, Parr TR, Minnick AA, Dolence EK, McKee JA, Miller MJ, Lavoie MC, Malouin F (1992) Modes of action and inhibitory activities of new siderophore-b-lactam conjugates that use specific iron uptake pathways for entry into bacteria. Antimicrob Agents Chemother 36:2166–2175

    PubMed  CAS  Google Scholar 

  • Brown KA, Ratledge C (1975) The effect of p-aminosalicylate on iron transport and assimilation in Mycobacteria. Biochim Biophys Acta 385:207–220

    PubMed  CAS  Google Scholar 

  • Budzikiewicz H (2004) Siderophores of the Pseudomonadaceae sensu stricto (fluorescent and non-Fluorescent Psedomonas spp.). Prog Chem Org Nat Prod 87:81–327

    CAS  Google Scholar 

  • Bullen JJ (1987) In: Bullen DJ, Griffiths E (eds) Iron and infection: molecular, physiological and clinical aspects, Wiley, New York, pp 1–526

  • Carpenter JGD, Moore JW (1969) Synthesis of an analogue of mycobactin. J Chem Soc 1610–1611

  • Dhungana S, Miller MJ, Dong L, Ratledge C, Crumbliss AL (2003) Fe(III) chelation properties of an extracellular siderophore exochelin MN. J Am Chem Soc 125:7654–7663. doi:10.1021/ja029578u

    Article  PubMed  CAS  Google Scholar 

  • Dolence EK, Minnick AA, Miller MJ (1990) N5-acetyl-N5-hydroxy-l-ornithine-derived siderophore-Carbacephlosporin β-Lactam conjugates: iron transport mediated drug delivery. J Med Chem 33:461–464. doi:10.1021/jm00164a001

    Article  PubMed  CAS  Google Scholar 

  • Dolence EK, Lin C-E, Miller MJ (1991a) Synthesis and siderophore activi ty of albomycin-like peptides derived from N5-acetyl-N5-hydroxy-l-orinithine. J Med Chem 34:956–968. doi:10.1021/jm00107a013

    Article  PubMed  CAS  Google Scholar 

  • Dolence EK, Minnick AA, Lin C-E, Miller MJ (1991b) Synthesis and siderophore and antibacterial activity of N5-acetyl-N5-hydroxy-l-ornithine-derived Siderophore-β-lactam conjugates: iron-transport-mediated drug delivery. J Med Chem 34:968–978. doi:10.1021/jm00107a014

    Article  PubMed  CAS  Google Scholar 

  • Dong L, Roosenberg JM, Miller MJ (2002) The total synthesis of deferrisalmycin B. J Am Chem Soc 124:15001–15005. doi:10.1021/ja028386w

    Article  PubMed  CAS  Google Scholar 

  • Fennell KA, Möllmann U, Miller MJ (2008) Syntheses and biological activity of amamistatin B and analogs. J Org Chem 73:1018–1024. doi:10.1021/jo7020532

    Article  PubMed  CAS  Google Scholar 

  • Ferguson AD, Hofmann E, Coulton JW (1998) Siderophore-mediated Iron tansport: crystal structure of FhuA with bound lipopolysaccharide. Science 282:2215. doi:10.1126/science.282.5397.2215

    Article  PubMed  CAS  Google Scholar 

  • Ferguson AD, Chakraborty R, Smith BS, Esser L, van der Helm D, Deisenhofer J (2002) Structural basis of gating by the outer membrane transporter FecA. Science 295:1715–1719. doi:10.1126/science.1067313

    Article  PubMed  CAS  Google Scholar 

  • Ferreras JA, Ryu JS, Di Lello F, Tan DS, Quadri LEN (2005) Small molecule inhibition of siderophore biosynthesis in Mycobacterium tuberculosis and Yersinia pestis. Nat Chem Biol 1:219–232. doi:10.1038/nchembio706

    Article  CAS  Google Scholar 

  • Floyd RA, Lewis CA (1983) Hydroxyl free-radical formation from hydrogen peroxide by ferrous iron nucleotide complexes. Biochemistry 22:2645–2649. doi:10.1021/bi00280a008

    Article  PubMed  CAS  Google Scholar 

  • Ghosh A, Ghosh M, Niu C, Malouin F, Möllmann U, Miller MJ (1996) Iron transport-mediated drug delivery using mixed-ligand siderophore-β-lactam conjugates. Chem Biol 3:1011–1019. doi:10.1016/S1074-5521(96)90167-2

    Article  PubMed  CAS  Google Scholar 

  • Graf E, Mahoney JR, Bryant RG, Eaton JW (1984) Iron-catalysed hydroxyl radical formation-stringent requirement for free iron coordination site. J Biol Chem 259:3620–3624

    PubMed  CAS  Google Scholar 

  • Guerinot ML (1994) Microbial iron transport. Annu Rev Microbiol 48:743. doi:10.1146/annurev.mi.48.100194.003523

    Article  PubMed  CAS  Google Scholar 

  • Gutteridge JMC, Richmond R, Halliwell B (1979) Inhibition of iron-catalyzed formation of hydroxyl radicals for superoxide and lipid peroxidation by desferrioxamine. Biochem J 184:469–472

    PubMed  CAS  Google Scholar 

  • Hall RM, Ratledge C (1986) Distribution and application of mycobactins for the characterization of species within the genus Rhodococcus. J Gen Microbiol 132:853–856

    PubMed  CAS  Google Scholar 

  • Heinisch L, Wittmann S, Stoiber T, Berg A, Ankel-Fuchs D, Möllmann U (2002). J Med Chem 45:3032–3040. doi:10.1021/jm010546b

    Google Scholar 

  • Hider RC (1984) Structure and bonding, vol 58. Springer-Verlag, Berlin, p 25

    Google Scholar 

  • Horwitz LD (1998) Method of treatment of atherosclerosis and vascular injury by the prevention of vascular smooth muscle cell proliferation. US Patent 5786326 and Chem Abstr 129:144856p

    Google Scholar 

  • Horwitz LD, Sherman NA, Kong Y, Pike AW, Gobin J, Fennessey PV, Horwitz MA (1988) Lipophilic siderophores of Mycobacterium tuberculosis prevent cardiac reperfusion injury. Proc Natl Acad Sci USA 95:5263–5268. doi:10.1073/pnas.95.9.5263

    Article  Google Scholar 

  • Horwitz LD, Horwitz MA, Gibson BW, Reeve J (1999) Use of exochelins in the preservation of organs for transplant. US Patent 5721209 and Chem Abst 130:47472y

    Google Scholar 

  • Ikeda Y, Nonaka H, Furrmai T, Onaka H, Igarashi Y (2005) Nocardimicins A, B, C, D, E and F, siderophores with Muscarinic M3 reeptor Inhibiting activity from Nocardia sp. TP-A0674. J Nat Prod 68:1061–1065

    Article  PubMed  CAS  Google Scholar 

  • Jaynes BH, Dirlam JP, Hecker SJ (1996) Antibacterial agents. In: Bristol JA (ed) Annual reports in medicinal chemistry, vol 31. Academic Press, London, pp 121–130

    Google Scholar 

  • Katsu K, Kitoh K, Inoue M, Mitsuhashi S (1982) In vitro antibacterial activity of E-0702, a new semisynthetic cephalosporin. Antimicrob Agents Chemother 22:181–185

    PubMed  CAS  Google Scholar 

  • Kong Y, Lesneefsky EJ, Ye J, Horwitz LD (1994) Prevention of lipid peroxidation does not prevent oxidant-induced myocardial contractile dysfunction. Am J Physiol 267:H2371–H2377

    PubMed  CAS  Google Scholar 

  • Levy SB (1992) The antibiotic paradox how miracle drugs are destroying the miraclej. Plenum Press, New York, pp 1–296

    Google Scholar 

  • Macham LP, Ratledge C (1975) A new group of waster-soluble iron-binding compounds from Mycobacteria: the exochelins. J Gen Microbiol 89:379–382

    PubMed  CAS  Google Scholar 

  • Macham LP, Ratledge C, Nocton JC (1975) Extracellular iron acquisition by Mycobacteria: role of the exochelins and evidence against the participation of mycobactin. Infect Immun 12:1242–1251

    PubMed  CAS  Google Scholar 

  • Macham LP, Stephenson MC, Ratledge C (1977) Iron transport in Mycobacterium smegmatis: the isolation, purification and function of exochelin MS. J Gen Microbiol 101:41–49

    CAS  Google Scholar 

  • McCready KA, Ratledge C (1977) Mycobactins from Mycobacterium avium. Int J Syst Bacteriol 7:288–289

    Google Scholar 

  • Mckee JA, Sharma SK, Miller MJ (1991) Iron transport mediated drug delivery systems: synthesis and antibacterial activity of spermidine- and lysine-based siderophore-β-lactam conjugates. Bioconjug Chem 2:281–291

    Article  PubMed  CAS  Google Scholar 

  • Messenger AJM, Hall RM, Ratledge C (1986) Iron uptake processes in Mycobacterium vaccae R877R, a Mycobacterium lacking mycobactin. J Gen Microbiol 132:845–852

    PubMed  CAS  Google Scholar 

  • Miethke M, Marahiel MA (2007) Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev 71:413–415

    Article  PubMed  CAS  Google Scholar 

  • Miller MJ (1989) Syntheses and therapeutic potential of hydroxamic acid based siderophores and analogues. Chem Rev 89:1563–1579

    Article  CAS  Google Scholar 

  • Miller MJ, Malouin F (1993) Microbial iron chelators as drug delivery agents: rational design and synthesis of siderophore-drug conjugates. Acc Chem Res 26:241–249

    Article  CAS  Google Scholar 

  • Miller MJ, Malouin F (1994) Sjiderophore-mediated drug delivery: the design, synthesis, and study of siderophore-antibiotic and antifungal conjugates. In: Bergeron RJ, Brittenham GM (eds) The development of iron chelators for clinical use. CRC, Boca Ratonj, pp 275–306

    Google Scholar 

  • Miller MJ, Malouin F, Dolence EK, Gasparski CM, Ghosh M, Guzzo PR, Lotz BT, McKee JA, Minnick A, Teng M (1993) Iron transport mediated drug delivery. In: Bently PH, Ponsford R (eds) Recent advances in the chemistry of anti-infective agents, vol 119. Royal Society of Chemistry, Cambridge, pp 135–159

    Google Scholar 

  • Minnick AA, McKee JA, Dolence EK, Miller MJ (1992) Iron transport-mediated antibacterial activity of and development of resistance to hydroxamate and catechol siderophore-carbacephalosporin conjugates. Antimicrob Agents Chemother 36:840–850

    PubMed  CAS  Google Scholar 

  • Moody DB, Yung DC, Cheng T-Y, Rosat J-P, Roura-mir C, O’Connor PB, Zajonc DM, Walz A, Miller MJ, Levery SB, Wilson IA, Costello CE, Brenner MB (2004) T cell activation by lipopeptide antigens. Science 303:527–531

    Article  PubMed  CAS  Google Scholar 

  • Morrison NE (1995) Mycobacterium leprae iron nutrition: bacterrioferritin, mycobactin, Exochelin and inatracellular growth. Int J Lepr 63:86–91

    CAS  Google Scholar 

  • Murakami Y, Kato S, Nakajima M, Matsuoka M, Kawai H, Shin-Ya K, Seto H (1996) Formobactin, a novel free radical scavenging and neuronal cell protecting substance from Nocardia sp. J Antibiot 49:839–845

    PubMed  CAS  Google Scholar 

  • Neilands JB, Valenta JR (1985) Iron-containing antibiotics. In: Sigel H (ed) Metal ions in biological systems, vol 19. Marcel Dekker, New York, pp 313–333

    Google Scholar 

  • Patel PV, Ratledge C (1973) Isolation of lipid-soluble compounds that bind ferric ions from Nocardia species. Biochem Soc Trans 1:886–888

    CAS  Google Scholar 

  • Paulsen H, Briedan M, Benz G (1987) Branched and chain-extended sugars. synthesis of the deferri form of the oxygen analog of delta-1-albomycin. Liebigs Ann Chem 8:565–575

    Article  Google Scholar 

  • Payne SM (1988) Iron and virulence in the family Enterobacteriacae. CRC Crit Rev Microbiol 16:81

    Article  CAS  Google Scholar 

  • Quadri LEN (2007) Strategic paradigm shifts in the antimicrobial drug discovery process of the 21st century. Infectious disorders—drug targets 7:230–237

    Article  PubMed  CAS  Google Scholar 

  • Quadri LEN, Sello J, Keating TA, Weinreb PH, Walsh CT (1998) Identification of a Mycobacterium tuberculosis gene cluster encoding the biosynthetic enzymes for assembly of the virulence-conferring siderophore mycobactin. Chem Biol 5:631–645

    Article  PubMed  CAS  Google Scholar 

  • Ratledge C (1971) Transport of iron by mycobactin in Mycobacterium smegmatis. Biochem Biophys Res Commun 45:856–862

    Article  PubMed  CAS  Google Scholar 

  • Ratledge C (1984) Metabolism of iron and other metals by Mycobacteria. Microbiol Ser 15:603–627

    CAS  Google Scholar 

  • Ratledge C (1987) In: Winkelmann G, van der Helm D, Neilands JB (eds) Iron transport in microbes, plants, and animals. VCH Press, Weinheim, FRG, pp 207

  • Ratledge C (2004) Iron, mycobacteria and tuberculosis. Tuberculosis 84:110–130

    Article  PubMed  Google Scholar 

  • Ratledge C, Brown KA (1972) Inhibition of mycobactin formation in Mycobacterium smegmatis by p-aminosalicylate. Am Rev Resp Dis 106:774–776

    PubMed  CAS  Google Scholar 

  • Ratledge C, Marshall BJ (1972) Iron transport in Mycobacterum smegmatis: the role of mycobactin. Biochim Biophys Acta 279:58–74

    PubMed  CAS  Google Scholar 

  • Ratledge C, Patel PV (1976) The isolation, properties and taxonomic relevance of lipid-soluble, iron-binding compounds (the nocobactins) from Nocardia. J Gen Microbiol 93:141–152

    PubMed  CAS  Google Scholar 

  • Ratledge C, Snow GA (1974) Isolation and structure of nocobactin na, a lipid-soluble iron-binding compound from Nocardia asteroids. Biochem J 139:407–413

    PubMed  CAS  Google Scholar 

  • Ratledge C, Patel PV, Mundy J (1982) Iron transport in Mycobacterium smegmatis: the location of mycobactin by electron microscopy. J Gen Microbiol 128:1559–1565

    PubMed  CAS  Google Scholar 

  • Rogers HJ (1987) Bacterial iron transport as a target for antibacterial agents. In: Winkelmann G, van der Helm D, Neilands JB (eds) Iron transport in microbes, plants, and animals. VCH Press, Weinheim, pp 223–233

    Google Scholar 

  • Roosenberg JM, Lin Y-M, Lu Y, Miller MJ (2000) Studies and syntheses of siderophore, microbial iron chelators, and analogs as potential drug delivery agents. Curr Med Chem 7(2):159–197

    PubMed  CAS  Google Scholar 

  • Sharman GJ, Williams DH, Ewing DF, Ratledge C (1995a) Isolation, purification and structure of exochelin MS, the extracellular siderophore from Mycobacterium smegmatis. Biochem J 305:187–196

    PubMed  CAS  Google Scholar 

  • Sharman GJ, Williams DH, Ewing DF, Ratledge C (1995b) Determination of the structure of exochelin MN, the extracellular Siderophore from Mycobacterium neoaurum. Chem & Biol 2:553–561

    Article  CAS  Google Scholar 

  • Snow GA (1970) Mycobactins: iron-chelating growth factors from Mycobacteria. Bacteriol Rev 34:99–125

    PubMed  CAS  Google Scholar 

  • Somu RV, Wilson DJ, Bennett EM, Boshoff H, Celia L, Beck BJ, Barry CEIII, Aldrich CC (2006) Antitubercular nucleosides that inhibit siderophore biosynthesis: SAR of the glycosyl domain. J Med Chem 49:7623–7635

    Article  PubMed  CAS  Google Scholar 

  • Stephenson MC, Ratledge C (1978) The transport of iron from ferriexochelin by Mycobacterium smegmatis. Biochem Soc Trans 6:423–425

    PubMed  CAS  Google Scholar 

  • Stephenson MC, Ratledge C (1979) Iron transport in Mycobacterium smegmatis: uptake of iron from ferriexochelin. J Gen Microbiol 110:193–202

    PubMed  CAS  Google Scholar 

  • Suenaga K, Kokubo S, Shinohara C, Tsuji T, Uemura D (1999) Structures of Amamistatins A and B, novel growth inhibitors of human tumor cell lines from an Actinomycete. Tetrahedron Lett 40:1945–1948

    Article  CAS  Google Scholar 

  • Tsukamoto M, Murooka K, Nakajima S, Abe S, Suzuki H, Hirano K, Kondo H, Kojira K, Suda H (1997) BE-32030 A, B, C, D, and E, new antitumor substances produced by Nocardia sp. A32030. J Antibiot 50:815–821

    PubMed  CAS  Google Scholar 

  • Vergne AF, Walz AJ, Miller MJ (2000) Iron chelators from Mycobacteria (1954–1999) and potential therapeutic applications. Nat Prod Rep 17:99–116

    Article  PubMed  CAS  Google Scholar 

  • Vertesy W, Aretz W, Fehlhaber H-W, Kogler H (1995) Salmycin A-D, Antibiotika aus Streptomyces violaceus, DSM 8286, mit Siderophore-Aminoglycosid-Struktur. Helv Chim Acta 78:46–60

    Article  CAS  Google Scholar 

  • Walling C (1975) Fenton’s reagent revisited. Acc Chem Res 8:125–131

    Article  CAS  Google Scholar 

  • Walz AJ, Miller MJ (2007) β-Lactams in synthesis: short syntheses of cobactin analogs. Tetrahedron Lett 48:5103–5105

    Article  CAS  Google Scholar 

  • Watanabe N-A, Nagasu T, Katsu K, Kitoh K (1987) E-0702, a new cephalosporin, is incorporated into Escherichia coli cells via the tonB-dependent iron transport system. Antimicrob Agents Chemother 31:497–504

    PubMed  CAS  Google Scholar 

  • Wheeler PR, Ratledge C (1994) Metabolism of M. tuberculosis. In: Bloom BR (ed) Tuberculosis pathogenesis, protection, and control. American Society of Microbiology, Washington, pp 353–385

    Google Scholar 

  • Winkelmann G, van der Helm D, Neilands JB (1987) (eds) Iron transport in microbes, plants, and animals. VCH Press, Weinheim, FRG, pp 1–533

    Google Scholar 

  • Zajonc DM, Crispin MDM, Bowden TA, Young DC, Cheng T-Y, Hu J, Costello CE, Rudd PM, Dwek RA, Miller MJ, Brenner MB, Moody DB, Wilson IA (2005) Molecular mechanism of lipopeptide presentation by CD1a. Immunity 22:209–219

    Article  PubMed  CAS  Google Scholar 

  • Zweier JL (1988) Measurement of superoxide-derived free-radicals in the reperfused heart-evidence for a free-radical mechanism of reperfusion injury. Biol Chem 263:1353–1357

    CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the NIH (AI054193) and the US Army Medical Research & Material Command (DAMD17-03-1-0206). The authors gratefully acknowledge Mrs. Patty Miller for performing MCF-7 and PC-3 cellular assays at Notre Dame. Baojie Wan at the University of Chicago’s Institute for Tuberculosis Research kindly provided M. tuberculosis inhibition data. The excellent technical assistance of Irmgard Heinemann and Uta Wohfield with microbial assays at the HKI is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marvin J. Miller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, M.J., Zhu, H., Xu, Y. et al. Utilization of microbial iron assimilation processes for the development of new antibiotics and inspiration for the design of new anticancer agents. Biometals 22, 61–75 (2009). https://doi.org/10.1007/s10534-008-9185-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-008-9185-0

Keywords

Navigation