Skip to main content

Advertisement

Log in

Redistribution of soil organic matter by permafrost disturbance in the Canadian High Arctic

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

With increased warming in the Arctic, permafrost thaw may induce localized physical disturbance of slopes. These disturbances, referred to as active layer detachments (ALDs), redistribute soil across the landscape, potentially releasing previously unavailable carbon (C). In 2007–2008, widespread ALD activity was reported at the Cape Bounty Arctic Watershed Observatory in Nunavut, Canada. Our study investigated organic matter (OM) composition in soil profiles from ALD-impacted and undisturbed areas. Solid-state 13C nuclear magnetic resonance (NMR) and solvent-extractable biomarkers were used to characterize soil OM. Throughout the disturbed upslope profile, where surface soils and vegetation had been removed, NMR revealed low O-alkyl C content and biomarker analysis revealed low concentrations of solvent-extractable compounds suggesting enhanced erosion of labile-rich OM by the ALD. In the disturbed downslope region, vegetation remained intact but displaced material from upslope produced lateral compression ridges at the surface. High O-alkyl content in the surface horizon was consistent with enrichment of carbohydrates and peptides, but low concentrations of labile biomarkers (i.e., sugars) suggested the presence of relatively unaltered labile-rich OM. Decreased O-alkyl content and biomarker concentrations below the surface contrasted with the undisturbed profile and may indicate the loss of well-established pre-ALD surface drainage with compression ridge formation. However, pre-ALD profile composition remains unknown and the observed decreases may result from nominal pre-ALD OM inputs. These results are the first to establish OM composition in ALD-impacted soil profiles, suggesting reallocation of permafrost-derived soil C to areas where degradation or erosion may contribute to increased C losses from disturbed Arctic soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amelung W, Brodowski S, Sandhage-Hofmann A, Bol R (2008) Combining biomarker with stable isotope analyses for assessing the transformation and turnover of soil organic matter. Adv Agron 100:155–250

    Article  Google Scholar 

  • Andersson RA, Meyers PA (2012) Effect of climate change on delivery and degradation of lipid biomarkers in a Holocene peat sequence in the Eastern European Russian Arctic. Org Geochem 53:63–72

    Article  Google Scholar 

  • Baldock JA, Preston CM (1995) Chemistry of carbon decomposition processes in forests as revealed by solid-state carbon-13 nuclear magnetic resonance. In: McFee WW, Kelly JM (eds) Carbon forms and functions in forest soils. Soil Sci Soc Am, Madison, pp 89–117

    Google Scholar 

  • Bockheim JG, Tarnocai C (1998) Recognition of cryoturbation for classifying permafrost-affected soils. Geoderma 81:281–293

    Article  Google Scholar 

  • Boddy E, Roberts P, Hill PW, Farrar J, Jones DL (2008) Turnover of low molecular weight dissolved organic C (DOC) and microbial C exhibit different temperature sensitivities in Arctic tundra soils. Soil Biol Biochem 40:1557–1566

    Article  Google Scholar 

  • Bowden WB, Gooseff MN, Malser A, Green A, Peterson BJ, Bradford J (2008) Sediment and nutrient delivery from thermokarst features in the foothills of the North Slope, Alaska: potential impacts on headwater stream ecosystems. J Geophys Res 113:G02026

    Article  Google Scholar 

  • Bush RT, McInerney FA (2013) Leaf wax n-alkane distributions in and across modern plants: implications for paleoecology and chemotaxonomy. Geochim Cosmochim Ac 117:161–179

    Article  Google Scholar 

  • Conte P, Spaccini R, Piccolo A (2004) State of the art of CPMAS 13C-NMR spectroscopy applied to natural organic matter. Prog Nucl Magn Reson Spectrosc 44:215–223

    Article  Google Scholar 

  • Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173

    Article  Google Scholar 

  • Davis N (2001) Permafrost: a guide to frozen ground in transition. Fairbanks, Alaska

    Google Scholar 

  • Dinel H, Schnitzer M, Mehuys GR (1990) Soil lipids: origin, nature, content, decomposition, and effect on soil physical properties. In: Bollag JM, Stotzky G (eds) Soil Biochemistry. Marcel Dekker, New York, pp 397–427

    Google Scholar 

  • Drake TW, Wickland KP, Spencer RGM, McKnight DM, Striegl RG (2015) Ancient low-molecular-weight organic acids in permafrost fuel rapid carbon dioxide production upon thaw. Proc Natl Acad Sci USA 112:13946–13951

    Article  Google Scholar 

  • Dria KJ, Sachleben JR, Hatcher PG (2002) Solid-state carbon-13 nuclear magnetic resonance of humic acids at high magnetic field strengths. J Environ Qual 31:393–401

    Article  Google Scholar 

  • Dutta K, Schuur EAG, Neff JC, Zimov SA (2006) Potential carbon release from permafrost soils of Northeastern Siberia. Global Chang Biol 12:2336–2351

    Article  Google Scholar 

  • Eglinton G, Hamilton RJ (1967) Leaf epicuticular waxes. Science 156:1322–1335

    Article  Google Scholar 

  • Eglinton G, Logan G (1991) Molecular Preservation. Philos Trans R Soc B 333:315–328

    Article  Google Scholar 

  • Ewing SA, Donnell JAO, Aiken GR, Butler K, Butman D, Windham-Myers L, Kanevskiy MZ (2015a) Long-term anoxia and release of ancient, labile carbon upon thaw of Pleistocene permafrost. Geophys Res Lett 42:10730–10738

    Article  Google Scholar 

  • Ewing SA, Paces JB, O’Donnell JA, Jorgenson MT, Kanevskiy MZ, Aiken GR, Shur YL, Harden JW, Striegl RG (2015b) Uranium isotopes and dissolved organic carbon in loess permafrost: modeling the age of ancient ice. Geochim Cosmochim Acta 152:143–165

    Article  Google Scholar 

  • Favaro EA, Lamoureux SF (2014) Antecedent controls on rainfall runoff response and sediment transport in a High Arctic catchment. Geogr Ann B 96:433–446

    Google Scholar 

  • Fontaine S, Mariotti A, Abbadie L (2003) The priming effect of organic matter: a question of microbial competition? Soil Biol Biochem 35:837–843

    Article  Google Scholar 

  • Fontaine S, Bardoux G, Abbadie L, Mariotti A (2004) Carbon input to soil may decrease soil carbon content. Ecol Lett 7:314–320

    Article  Google Scholar 

  • Goryachkin SV, Karavaeva NA, Targulian VO, Glazov MV (1999) Arctic soils: spatial distribution, zonality and transformation due to global change. Permafrost Periglac 10:235–250

    Article  Google Scholar 

  • Grewer DM, Lafrenière MJ, Lamoureux SF, Simpson MJ (2015) Potential shifts in Canadian High Arctic sedimentary organic matter composition with permafrost active layer detachments. Org Geochem 79:1–13

    Article  Google Scholar 

  • Hartley IP, Hopkins DW, Sommerkorn M, Wookey PA (2010) The response of organic matter mineralisation to nutrient and substrate additions in sub-arctic soils. Soil Biol Biochem 42:92–100

    Article  Google Scholar 

  • Harwood JL, Russell NJ (1984) Lipids in plants and microbes. George Allen and Unwin, London

    Book  Google Scholar 

  • Henry HAL (2007) Soil freeze-thaw cycle experiments: trends, methodological weaknesses and suggested improvements. Soil Biol Biochem 39:977–986

    Article  Google Scholar 

  • Higashiyama T (2002) Novel functions and applications of trehalose. Pure Appl Chem 74:1263–1269

    Article  Google Scholar 

  • Hobbie SE, Nadelhoffer KJ, Hogberg P (2002) A synthesis: the role of nutrients as constraints on carbon balances in boreal and arctic regions. Plant Soil 242:163–170

    Article  Google Scholar 

  • Hodgson DA, Vincent JS, Fyles JG (1984) Quaternary geology of Central Melville Island, Northwest Territories. Geol Surv Can Pap 83–16:1–25

    Google Scholar 

  • Hotchkiss ER, Hall RO, Baker MA, Rosi-Marshall EJ, Tank JL (2014) Modeling priming effects on microbial consumption of dissolved organic carbon in rivers. J Geophys Res Biogeosci 119:982–995

    Article  Google Scholar 

  • Johns TJ, Angove MJ, Wilkens S (2015) Measuring soil organic carbon: which technique and where to from here? Soil Res 53:717–736

    Article  Google Scholar 

  • Jorgenson MT, Shur YL, Pullman ER (2006) Abrupt increase in permafrost degradation in Arctic Alaska. Geophys Res Lett 33:L02503

    Article  Google Scholar 

  • Kögel-Knabner I (1997) 13C and 15N NMR spectroscopy as a tool in soil organic matter studies. Geoderma 80:243–270

    Article  Google Scholar 

  • Kögel-Knabner I (2002) The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biol Biochem 34:139–162

    Article  Google Scholar 

  • Koven CD, Ringeval B, Friedlingstein P, Ciais P, Cadule P, Khvorostyanov D, Krinner G, Tarnocai C (2011) Permafrost carbon-climate feedbacks accelerate global warming. P Natl Acad Sci USA 108:14769–14774

    Article  Google Scholar 

  • Kuzyakov Y (2002) Review: factors affecting rhizosphere priming effects. J Plant Nutr Soil Sc 165:382–396

    Article  Google Scholar 

  • Kuzyakov Y (2010) Priming effects: interactions between living and dead organic matter. Soil Biol Biochem 42:1363–1371

    Article  Google Scholar 

  • Lamoureux SF, Lafrenière MJ (2009) Fluvial impact of extensive active layer detachments, Cape Bounty, Melville Island, Canada. Arct Antarct Alp Res 41:59–68

    Article  Google Scholar 

  • Lamoureux SF, Lafrenière MJ (2014) Seasonal fluxes and age of particulate organic carbon exported from Arctic catchments impacted by localized permafrost slope disturbances. Environ Res Lett 9:045002

    Article  Google Scholar 

  • Lamoureux SF, Lafrenière MJ, Favaro EA (2014) Erosion dynamics following localized permafrost slope disturbances. Geophys Res Lett 41:5499–5505

    Article  Google Scholar 

  • Lantz TC, Kokelj SV (2008) Increasing rates of retrogressive thaw slump activity in the Mackenzie Delta region, NWT, Canada. Geophys Res Lett 35:L06502

    Article  Google Scholar 

  • Lee H, Schuur EAG, Inglett KS, Lavoie M, Chanton JP (2012) The rate of permafrost carbon release under aerobic and anaerobic conditions and its potential effects on climate. Global Chang Biol 18:515–527

    Article  Google Scholar 

  • Lewis T, Braun C, Hardy DR, Francus P, Bradley RS (2005) An extreme sediment transfer event in a Canadian High Arctic stream. Arct Antarct Alp Res 37:477–482

    Article  Google Scholar 

  • Lewis T, Lafrenière MJ, Lamoureux SF (2012) Hydrochemical and sedimentary responses of paired High Arctic watersheds to unusual climate and permafrost disturbance, Cape Bounty, Melville Island, Canada. Hydrol Process 26:2003–2018

    Article  Google Scholar 

  • Lewkowicz AG (2007) Dynamics of active-layer detachment failures, Fosheim Peninsula, Ellesmere Island, Nunavut, Canada. Permafrost Periglac 18:89–103

    Article  Google Scholar 

  • Lewkowicz AG, Harris C (2005a) Morphology and geotechnique of active-layer detachment failures in discontinuous and continuous permafrost, northern Canada. Geomorphology 69:275–297

    Article  Google Scholar 

  • Lewkowicz AG, Harris C (2005b) Frequency and magnitude of active-layer detachment failures in discontinuous and continuous permafrost, Northern Canada. Permafrost Periglac 69:275–297

    Google Scholar 

  • Louiseize NL, Lafrenière MJ, Hastings MG (2014) Stable isotopic evidence of enhanced export of microbially derived NO3 following active layer slope disturbance in the Canadian High Arctic. Biogeochemistry 121:565–580

    Article  Google Scholar 

  • MacDougall AH, Avis CA, Weaver AJ (2012) Significant contribution to climate warming from the permafrost carbon feedback. Nat Geosci 5:719–721

    Article  Google Scholar 

  • Mann PJ, Eglinton TI, McIntyre CP, Zimov N, Davydova A, Vonk JE, Holmes RM, Spencer RGM (2015) Utilization of ancient permafrost carbon in headwaters of Arctic fluvial networks. Nat Commun 6:7856

    Article  Google Scholar 

  • Marzi R, Torkelson BE, Olson RK (1993) A revised carbon preference index. Org Geochem 20:1303–1306

    Article  Google Scholar 

  • Mikan CJ, Schimel JP, Doyle AP (2002) Temperature controls of microbial respiration in arctic tundra soils above and below freezing. Soil Biol Biochem 34:1785–1795

    Article  Google Scholar 

  • Nadelhoffer K, Giblin A, Shaver G, Laundre J (1991) Effects of temperature and substrate quality on element mineralization in 6 Arctic Soils. Ecology 72:242–253

    Article  Google Scholar 

  • Natali SM, Schuur EAG, Webb EE, Pries CEH, Crummer KG (2014) Permafrost degradation stimulates carbon loss from experimentally warmed tundra. Ecology 95:602–608

    Article  Google Scholar 

  • Nelson DW, Sommers LE (1996) Total carbon, organic carbon, and organic matter. In: Sparks DL (ed) Methods of soil analysis. Part 3: Chemical methods. Soil Science Society of America, Inc., American Society of Agronomy, Inc., Madison, Wisconsin, USA, pp 961–1010

  • Niederer M, Pankow W, Wiemken A (1992) Seasonal changes of soluble carbohydrates in mycorrhizas of Norway spruce and changes induced by exposure to frost and desiccation. Eur J Forest Pathol 22:291–299

    Article  Google Scholar 

  • Nowinski NS, Trumbore SE, Schuur EAG, Mack MC, Shaver GR (2008) Nutrient addition prompts rapid destabilization of organic matter in an arctic tundra ecosystem. Ecosystems 11:16–25

    Article  Google Scholar 

  • Otto A, Simpson MJ (2005) Degradation and preservation of vascular plant-derived biomarkers in grassland and forest soils from Western Canada. Biogeochemistry 74:377–409

    Article  Google Scholar 

  • Pautler BG, Simpson AJ, Mcnally DJ, Lamoureux SF, Simpson MJ (2010a) Arctic permafrost active layer detachments stimulate microbial activity and degradation of soil organic matter. Environ Sci Technol 44:4076–4082

    Article  Google Scholar 

  • Pautler BG, Austin J, Otto A, Stewart K, Lamoureux SF, Simpson MJ (2010b) Biomarker assessment of organic matter sources and degradation in Canadian High Arctic littoral sediments. Biogeochemistry 100:75–87

    Article  Google Scholar 

  • Preston CM (2014) Environmental NMR: solid-state methods. In: Simpson MJ, Simpson AJ (eds) NMR spectroscopy: a versatile tool for environmental research. Wiley, New York

    Google Scholar 

  • Preston C, Trofymow J, Sayer B, Niu J (1997) C-13 nuclear magnetic resonance spectroscopy with cross-polarization and magic-angle spinning investigation of the proximate-analysis fractions used to assess litter quality in decomposition studies. Can J Bot 75:1601–1613

    Article  Google Scholar 

  • Rao Z, Zhu Z, Wang S, Jia G, Qiang M, Wu Y (2009) CPI values of terrestrial higher plant-derived long-chain n-alkanes: a potential paleoclimatic proxy. Front Earth Sci 3:266–272

    Article  Google Scholar 

  • Rivkina E, Friedmann E, McKay C, Gilichinsky D (2000) Metabolic activity of permafrost bacteria below the freezing point. Appl Environ Microb 66:3230–3233

    Article  Google Scholar 

  • Rumpel C, Rabia N, Derenne S, Quenea K, Eusterhues K, Kögel-Knabner I, Mariotti A (2006) Alteration of soil organic matter following treatment with hydrofluoric acid (HF). Org Geochem 37:1437–1451

    Article  Google Scholar 

  • Rutherford PM, McGill WB, Arocena JM, Figueiredo CT (2008) Total nitrogen. In: Carter MR, Gregorich EG (eds) Soil sampling and methods of analysis, 2nd edn. Taylor and Francis Group, Boca Raton, pp 239–250

    Google Scholar 

  • Schaefer K, Zhang T, Bruhwiler L, Barrett AP (2011) Amount and timing of permafrost carbon release in response to climate warming. Tellus B 63:165–180

    Article  Google Scholar 

  • Schimel JP, Clein JS (1996) Microbial response to freeze–thaw cycles in tundra and taiga soils. Soil Biol Biochem 28:1061–1066

    Article  Google Scholar 

  • Schuur EAG, Vogel JG, Crummer KG, Lee H, Sickman JO, Osterkamp TE (2009) The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature 459:556–559

    Article  Google Scholar 

  • Schuur EAG, McGuire AD, Schădel C, Grosse G, Harden JW, Hayes DJ, Hugelius G, Koven CD, Kuhry P, Lawrence DM, Natali SM, Olefeldt D, Romanovsky VE, Schaefer K, Turetsky MR, Treat CC, Vonk JE (2015) Climate change and the permafrost carbon feedback. Nature 520:171–179

    Article  Google Scholar 

  • Shi L, Sutter BM, Ye X, Tu BP (2010) Trehalose is a key determinant of the quiescent metabolic state that fuels cell cycle progression upon return to growth. Mol Biol Cell 21:1982–1990

    Article  Google Scholar 

  • Shur Y, Hinkel KM, Nelson FE (2005) The transient layer: implications for geocryology and climate-change science. Permafrost Periglac 16:5–17

    Article  Google Scholar 

  • Silljé HHW, Paalman JWG, ter Schure EG, Olsthoorn SQB, Verkleij AJ, Boonstra J, Verrips CT (1999) Function of trehalose and glycogen in cell cycle progression and cell viability in Sacchromyces cerevisiae. J Bacteriol 181:396–400

    Google Scholar 

  • Simoneit B (1984) Organic-matter of the troposphere. 3. Characterization and sources of petroleum and pyrogenic residues in aerosols over the Western United-States. Atmos Environ 18:51–67

    Article  Google Scholar 

  • Simoneit BRT, Mazurek MA (1982) Organic matter of the troposphere. 2. Natural background of biogenic lipid matter in aerosols over the rural western United States. Atmos Environ 16:2139–2159

    Article  Google Scholar 

  • Simpson MJ, Otto A, Feng X (2008) Comparison of solid-state carbon-13 nuclear magnetic resonance and organic matter biomarkers for assessing soil organic matter degradation. Soil Sci Soc Am J 72:268–276

    Article  Google Scholar 

  • Sistla SA, Shinichi A, Schimel JP (2012) Detecting microbial N-limitation in tussock tundra soil: implications for Arctic soil organic carbon cycling. Soil Biol Biochem 55:78–84

    Article  Google Scholar 

  • Sjögersten S, Turner BL, Mahieu N, Condron LM, Wookey PA (2003) Soil organic matter biochemistry and potential susceptibility to climatic change across the forest-tundra ecotone in the Fennoscandian mountains. Global Chang Biol 9:759–772

    Article  Google Scholar 

  • Spencer RGM, Mann PJ, Dittmar T, Eglinton TI, McIntyre C, Holmes RM, Zimov N, Stubbins A (2015) Detecting the signature of permafrost thaw in Arctic rivers. Geophys Res Lett 42:2830–2835

    Article  Google Scholar 

  • Tarnocai C, Canadell JG, Schuur EAG, Kuhry P, Mazhitova G, Zimov S (2009) Soil organic carbon pools in the northern circumpolar permafrost region. Glob Biogeochem Cycles 23:GB2023

    Article  Google Scholar 

  • Treat CC, Natali SM, Ernakovich J, Iversen CM, Lupascu M, McGuire AD, Norby RJ, Chowdhury TR, Richter A, Šantrůčková H, Schadel C, Schuur EAG, Sloan VL, Turetsky MR, Waldrop MP (2015) A pan-Arctic synthesis of CH4 and CO2 production from anoxic soil incubations. Glob Chang Biol 21:2787–2803

    Article  Google Scholar 

  • Tuo JC, Li Q (2005) Occurrence and distribution of long-chain acyclic ketones in immature coals. Appl Geochem 20:553–568

    Article  Google Scholar 

  • Ugolini FC (1986) Peodgenic zonation in the well-drained soils of the Arctic regions. Quat Res 26:100–120

    Article  Google Scholar 

  • Uhlířová E, Šantrůčková H, Davidov SP (2007) Quality and potential biodegradability of soil organic matter preserved in permafrost of Siberian tussock tundra. Soil Biol Biochem 39:1978–1989

    Article  Google Scholar 

  • von Lützow M, Kögel-Knabner I, Ekschmitt K, Matzner E, Guggenberger G, Marschner B, Flessa H (2006) Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions—a review. Eur J Soil Sci 57:426–445

    Article  Google Scholar 

  • Vonk JE, Gustafsson O (2013) Permafrost-carbon complexities. Nat Geosci 6:675–676

    Article  Google Scholar 

  • Vonk JE, van Dongen BE, Gustafsson Ö (2010) Selective preservation of old organic carbon fluvially released from sub-Arctic soils. Geophys Res Lett 37:L11605

    Article  Google Scholar 

  • Waldrop MP, Wickland KP, White R III, Berhe AA, Harden JW, Romanovsky VE (2010) Molecular investigations into a globally important carbon pool: permafrost-protected carbon in Alaskan soils. Glob Chang Biol 16:2543–2554

    Google Scholar 

  • Walker DA, Raynolds MK, Daniels FJA, Einarsson E, Elvebakk A, Gould WA, Katenin AE, Kholod SS, Markon CJ, Melnikov ES, Moskalenko NG, Talbot SS, Yurtsev BA (2005) The circumpolar Arctic vegetation map. J Veg Sci 16:267–282

    Article  Google Scholar 

  • Wang FL, Bettany JR (1993) Influence of freeze–thaw and flooding on the loss of soluble organic-carbon and carbon-dioxide from soil. J Environ Qual 22:709–714

    Article  Google Scholar 

  • Wild B, Schnecker J, Alves RJE, Barsukov P, Barta J, Capek P, Gentsch N, Gittel A, Guggenberger G, Lashchinskiy N, Mikutta R, Rusalimova O, Santruckova H, Shibistova O, Urich T, Watzka M, Zrazhevskaya G, Richter A (2014) Input of easily available organic C and N stimulates microbial decomposition of soil organic matter in arctic permafrost soil. Soil Biol Biochem 75:143–151

    Article  Google Scholar 

  • Woods GC, Simpson MJ, Pautler BG, Lamoureux SF, Lafrenière MJ, Simpson AJ (2011) Evidence for the enhanced lability of dissolved organic matter following permafrost slope disturbance in the Canadian High Arctic. Geochim Cosmochim Acta 75:7226–7241

    Article  Google Scholar 

  • Zimov S, Schuur E, Chapin F (2006a) Permafrost and the global carbon budget. Science 312:1612–1613

    Article  Google Scholar 

  • Zimov SA, Davydov SP, Zimova GM, Davydova AI, Schuur EAG, Dutta K, Chapin FS (2006b) Permafrost carbon: stock and decomposability of a globally significant carbon pool. Geophys Res Lett 33:L20502

    Article  Google Scholar 

Download references

Acknowledgments

We sincerely thank two anonymous reviewers for their constructive feedback on an earlier version of this manuscript. We also thank ArcticNet NCE and the Natural Sciences and Engineering Research Council (NSERC) Discovery Frontiers Arctic Development and Adaptation to Permafrost in Transition (ADAPT) grant for supporting this research. D. M. Grewer thanks NSERC for support via the NSERC Postgraduate Scholarship. Polar Continental Shelf Programme provided logistics for field sampling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myrna J. Simpson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1124 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grewer, D.M., Lafrenière, M.J., Lamoureux, S.F. et al. Redistribution of soil organic matter by permafrost disturbance in the Canadian High Arctic. Biogeochemistry 128, 397–415 (2016). https://doi.org/10.1007/s10533-016-0215-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-016-0215-7

Keywords

Navigation