Skip to main content

Advertisement

Log in

The importance of considering shifts in seasonal changes in discharges when predicting future phosphorus loads in streams

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

In this work, we hypothesize that phosphorus (P) concentrations in streams vary seasonally and with streamflow and that it is important to incorporate this variation when predicting changes in P loading associated with climate change. Our study area includes 14 watersheds with a range of land uses throughout the U.S. Great Lakes Basin. We develop annual seasonal load-discharge regression models for each watershed and apply these models with simulated discharges generated for future climate scenarios to simulate future P loading patterns for two periods: 2046–2065 and 2081–2100. We utilize output from the Coupled Model Intercomparison Project phase 3 downscaled climate change projections that are input into the Large Basin Runoff Model to generate future discharge scenarios, which are in turn used as inputs to the seasonal P load regression models. In almost all cases, the seasonal load-discharge models match observed loads better than the annual models. Results using the seasonal models show that the concurrence of nonlinearity in the load-discharge model and changes in high discharges in the spring months leads to the most significant changes in P loading for selected tributaries under future climate projections. These results emphasize the importance of using seasonal models to understand the effects of future climate change on nutrient loads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Agren A, Buffam, I, Bishop K, Laudon H (2010) Modeling stream dissolved organic carbon concentrations during spring flood in the boreal forest: a simple empirical approach for regional predictions. J Geophys Res Biogeochem 115

  • Alexander RB, Smith RA, Schwarz GE (2004) Estimates of diffuse phosphorus sources in surface waters of the United States using a spatially referenced watershed model. Water Sci Technol 49(3):1–10

    Google Scholar 

  • Basu NB, Destouni G, Jawitz JW, Thompson SE, Loukinova NV, Darracq A, Zanardo S, Yaeger M, Sivapalan M, Rinaldo A, Rao PSC (2010) Nutrient loads exported from managed catchments reveal emergent biogeochemical stationarity. Geophys Res Lett 37(23):1944–8007

    Article  Google Scholar 

  • Bates BC, Kundzewicz ZW, Wu S, Palutikof JP (eds) (2008) Climate change and water, technical paper VI of the intergovernmental panel on climate change. IPCC Secretariat, Geneva

    Google Scholar 

  • Bosch NS, Allan JD, Selegean JP, Scavia D (2013) Scenario-testing of agricultural best management practices in Lake Erie watersheds. J Great Lakes Res 39(3):429–436

    Article  Google Scholar 

  • Bouraoui F, Galbiati L, Bidoglio G (2002) Climate change impacts on nutrient loads in the Yorkshire Ouse catchment (UK). Hydrol Earth System Sci Discuss 6(2):197–209

    Article  Google Scholar 

  • Bower MJ, Smith JT, Jarvie HP, Neal C (2008) Modelling of phosphorus inputs to rivers from diffuse and point sources. Sci Tot Environ 395:125–138

    Article  Google Scholar 

  • Boynton WR, Kemp WM (2000) Influence of river flow and nutrient loads on selected ecosystem processes. In: Hobbie JE (ed) Estuarine science: a synthetic approach to research and practice. Island Press, Washington, DC, pp 269–298

    Google Scholar 

  • Croley TE (2002) Large Basin Runoff Model. In: ColoSingh V, Frevert D, Meyer S (eds) Mathematical models of large watershed hydrology. Water Resources Publications, Littleton, pp 717–770

    Google Scholar 

  • Crossman J, Futter MN, Oni SK, Whitehead PG, Jin L, Butterfield D, Baulch HM, Dillon PJ (2013) Impacts of climate change on hydrology and water quality: future proofing management strategies in the Lake Simcoe watershed, Canada. J Great Lakes Res 39(1):19–32

    Article  Google Scholar 

  • Crossman J, Futter MN, Whitehead PG, Stainsby E, Baulch HM, Jin L, Oni SK, Wilby RL, Dillon PJ (2014) Flow pathways and nutrient transport mechanisms drive hydrochemical sensitivity to climate change across catchments with different geology and topography. Hydrol Earth Syst Sci 18(12):5125–5148

    Article  Google Scholar 

  • Daloğlu I, Cho KH, Scavia D (2012) Evaluating causes of trends in long-term dissolved reactive phosphorus loads to Lake Erie. Environ Sci Technol 46(19):10660–10666

    Article  Google Scholar 

  • Danz ME, Corsi SR, Graczyk DJ (2010) Characterization of suspended solids and total phosphorus loadings from small watersheds in Wisconsin. U.S. Geological Survey Scientific Investigation Report 2010–5039

  • Darracq A, Lindgren G, Destouni G (2008) Long-term development of phosphorus and nitrogen loads through the subsurface and surface water systems of drainage basins. Glob Biogeochem Cycles 22(3):GB3022

    Article  Google Scholar 

  • Dorioz JM et al (1986) Sediment impact on phosphorus transport in a river system. In: Lauga J, Decamps H, Holland MM (eds) Proceedings of MAB/UNESCO, PIREN/CNRS international symposium, Tolouse, pp 25–34

  • Dorioz JM, Pilleboue E, Ferhi A (1989) Phosphorus dynamics in watersheds: the importance of retention phenomena in sediments. Water Res 23:147–158

    Article  Google Scholar 

  • Dove A (2009) Long-term trends in major ions and nutrients in Lake Ontario. Aquatic. Ecosyst Health Manag 12:281–295

    Article  Google Scholar 

  • Duan N (1983) Smearing estimate: a nonparametric retransformation method. J Am Stat Assoc 48:605–610

    Article  Google Scholar 

  • Gleick PH (1986) Methods for evaluating the regional hydrologic effects of global climate changes. J Hydrol 88:97–116

    Article  Google Scholar 

  • Godsey SE, Kirchner JW, Clow DW (2009) Concentration–discharge relationships reflect chemostatic characteristics of US catchments. Hydrol Process 23(13):1844–1864

    Article  Google Scholar 

  • Greene WH (2003) Econometric analysis. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Grunwald S, Qi C (2006) GIS-based water quality modeling in the Sandusky Watershed. J Am Water Resour Assoc 42(4):957–973

    Article  Google Scholar 

  • Guan K, Thompson SE, Harman CJ, Basu NB, Rao PSC, Sivapalan M, Kalita PK (2011) Spatiotemporal scaling of hydrological and agrochemical export dynamics in a tile-drained Midwestern watershed. Water Resour Res 47(10):W00J06

    Article  Google Scholar 

  • Gyawali R, Watkins DW, Griffis VW, Lofgren BF (2014) Energy budget considerations for hydro-climatic impact assessment in Great Lakes watersheds. J Great Lakes Res 40(4):940–948

    Article  Google Scholar 

  • Hanson PC, Carpenter SR, Armstrong DE, Stanley EH, Kratz TK (2006) Lake dissolved inorganic carbon and dissolved oxygen: changing drivers from days to decades. Ecol Monogr 76(3):343–363

    Article  Google Scholar 

  • Haygarth P, Turner BL, Fraser A, Jarvis S, Harrod T, Nash D, Beven K (2004) Temporal variability in phosphorus transfers: classifying concentration? discharge event dynamics. Hydrol Earth Sys Sci Discuss 8(1):88–97

    Article  Google Scholar 

  • Hidalgo HG, Das T, Dettinger MD, Cayan DR, Pierce DW, Barnett TP,  Bala G, Mirin A, Wood AW, Bonfils C, Santer BD, Nozawa T (2009) Detection and attribution of streamflow timing changes to climate change in the western United States. J Climat 22(13):3838–3855

    Article  Google Scholar 

  • Hubbard L, Kolpin DW, Kalkhoff SJ, Robertson DM (2011) Nutrient and sediment concentrations and corresponding loads during the historic June 2008 flooding in Eastern Iowa. J Environ Qual 201140:166–175

    Article  Google Scholar 

  • Jeppesen E, Kronvang B, Meerhoff M, Sondergaard M, Hansen KM, Andersen HE, Lauridsen TL, Liboriussen L, Beklioglu M, Ozen A, Olesen JE (2009) Climate change effects on runoff, catchment phosphorus loading and lake ecological state, and potential adaptations. J Environ Qual 38(5):1930–1941

    Article  Google Scholar 

  • Johnes PJ (2007) Uncertainties in annual riverine phosphorus load estimation: impact of load estimation methodology, sampling frequency, baseflow index and catchment population density. J Hydrol 32(1–2):241–258

    Article  Google Scholar 

  • Kara EL, Hanson P, Hamilton D, Hipsey MR, McMahon KD, Read JS, Winslow L, Dedrick J, Rose K, Carey CC, Bertilsson S, da Motta MD, Beversdorf L, Miller T, Wu C, Hsieh YF, Gaiser E, Kratz T (2012) Time-scale dependence in numerical simulations: assessment of physical, chemical, and biological predictions in a stratified lake at temporal scales of hours to months. Environ Modell Softw 35:104–121

    Article  Google Scholar 

  • Kling GW, Hayhoe K, Johnson LB, Magnuson JJ, Polasky S, Robinson SK, Shuter BJ, Wander MM, Wuebbles DJ, Zak DR (eds) (2003) Confronting climate change in the Great Lakes region: impacts on our communities and ecosystems. UCS Publications, Cambridge

  • Kunkel KE., Stevens LE, Stevens SE, Sun L, Janssen E, Wuebbles D, Hilberg SD, Timlin MS, Stoecker L, Westcott NE, Dobson JG (2013) Regional climate trends and scenarios for the U.S. National Climate Assessment: Part 3. Climate of the Midwest U.S. NOAA technical report NESDIS 142-3. National Oceanic and Atmospheric Administration, National Environmental Satellite, Data, Information Service, Washington, DC

  • LaBeau MB (2012) Integrated assessment of anthropogenic, climate, and policy induced changes of phosphorus export in the United States Laurentian Great Lakes watersheds. PhD Dissertation, Michigan Technological University, Houghton

  • LaBeau MB, Robertson DM, Mayer AS, Pijanowski PJ, Saad DA (2014) Effects of future urban and biofuel crop expansions on the riverine export of phosphorus to the Laurentian Great Lakes. Ecol Modell 277:27–37

    Article  Google Scholar 

  • Lewis T, Lamoureux SF (2010) Twenty-first century discharge and sediment yield predictions in a small high Arctic watershed. Glob Planet Change 71(1):27–41

    Article  Google Scholar 

  • Lofgren BM, Hunter TS, Wilbarger J (2011) Effects of using air temperature as a proxy for potential evapotranspiration in climate change scenarios of Great Lakes basin hydrology. J Great Lakes Res 37(4):744–752

    Article  Google Scholar 

  • Long T, Wellen C, Arhonditsis G, Boyd D (2014) Evaluation of stormwater and snowmelt inputs, land use and seasonality on nutrient dynamics in the watersheds of Hamilton Harbour, Ontario,Canada. J. Great Lakes Res 40(4):964–979

    Article  Google Scholar 

  • Luscz EC, Kendall AD, Hyndman DW (2015) High resolution spatially explicit nutrient source models for the Lower Peninsula of Michigan. J Great Lakes Res. doi:10.1016/j.jglr.2015.02.004

    Google Scholar 

  • Maurer EP, Hidalgo HG, Das T, Dettinger MD, Cayan DR (2010) The utility of daily large-scale climate data in the assessment of climate change impacts on daily streamflow in California. Hydrol Earth Syst Sci 14(6):1125–1138

    Article  Google Scholar 

  • Meehl GA, Covey C, Delworth T, Latif M, McAvaney B, Mitchell JFB, Stouffer RJ, Taylor KE (2007) The WCRP CMIP3 multi-model dataset: a new era in climate change research. Bull Am Meteorol Soc 88:1383–1394

    Article  Google Scholar 

  • Meier HEM, Hordoir R, Andersson HC, Dieterich C, Eilola K, Gustafsson BG, Schimanke S (2012) Modeling the combined impact of changing climate and changing nutrient loads on the Baltic Sea environment in an ensemble of transient simulations for 1961–2099. Clim Dyn 39(9–10):2421–2441

    Article  Google Scholar 

  • Melillo JM, Richmond TC, Yohe GW (2014) Climate change impacts in the United States: the third national climate assessment. US Glob Change Res Prog. doi:10.7930/J0Z31WJ2

    Google Scholar 

  • Michalak AM, Anderson EJ, Beletsky D, Boland S, Bosch NS, Bridgeman TB, Zagorski MA (2013) Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with expected future conditions. Proc Natl Acad Sci USA 110(16):6448–6452

    Article  Google Scholar 

  • Mida JL, Scavia D, Fahnenstiel GL, Pothoven SA, Vanderploeg HA, Dolan DM (2010) Long-term and recent changes in southern Lake Michigan water quality with implications for present trophic status. J Great Lakes Res 36:42–49

    Article  Google Scholar 

  • Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guideline for systematic quantification of accuracy in watershed simulations. Trans ASABE 50:885–900

    Article  Google Scholar 

  • Quilbé R, Rousseau AN, Duchemin M, Poulin A, Gangbazo G, Villeneuve JP (2006) Selecting a calculation method to estimate sediment and nutrient loads in streams: application to the Beaurivage River (Québec, Canada). J Hydrol 326(1–4):295–310

    Article  Google Scholar 

  • R Development Core Team (2010) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Riverson J, Costa-Cabral M, Coats R, Reuter J, Dettinger M, Sahoo G, Schladow G, Wolfe B (2013) Modeling the impacts of climate change on streamflow, nutrient and sediment loads in the Tahoe Basin. Clim Change. doi:10.1007/s10584-012-0629-8

    Google Scholar 

  • Robertson DM (1997) Regionalized loads of sediment and phosphorus to Lakes Michigan and Superior-High flow and long term average. J Great Lakes Res 23:416–439

    Article  Google Scholar 

  • Robertson DM, Saad DA (2011) Nutrient inputs to the Laurentian Great Lakes by source and watershed estimated using SPARROW watershed models. J Am Water Resour Assoc 47:1011–1033. doi:10.1111/j.1752-1688.2011.00574.x

    Article  Google Scholar 

  • Royer TV, David MB, Gentry LE (2006) Timing of riverine export of nitrate and phosphorus from agricultural watersheds in Illinois: implications for reducing nutrient loading to the Mississippi River. Environ Sci Technol 40:4126–4131

    Article  Google Scholar 

  • Sahoo GB, Schladow SG, Reuter JE, Coats R, Dettinger M, Riverson J, Wolfe B, Costa-Cabral M (2012) The response of Lake Tahoe to climate change. Climat Change. doi:10.1007/s10584-012-0600-8

    Google Scholar 

  • Scavia D, Allan JD, Arend KK, Bartell S, Beletsky D, Bosch NS, Zhou Y (2014) Assessing and addressing the re-eutrophication of Lake Erie: central basin hypoxia. J Great Lakes Res 40(2):226–246

    Article  Google Scholar 

  • Stallard RF, Murphy SF (2014) A unified assessment of hydrologic and biogeochemical responses in research watersheds in eastern Puerto rico using runoff-concentration relations. Aq Geochem 20(2–3):115–139

    Article  Google Scholar 

  • Sterner RW, Anagnostou E, Brovold S, Bullerjahn GS, Finlay JC, Kumar S, McKay RML, Sherrell RM (2007) Increasing stoichiometric imbalance in North America’s largest lake: nitrification in Lake Superior. Geophys Res Lett 34:L10406

    Article  Google Scholar 

  • Stottlemeyer R (2001) Processes regulating watershed chemical export during snowmelt, Fraser experimental forest, Colorado. J Hydrol 245:177–195

    Article  Google Scholar 

  • Stow CA, Cha Y, Johnson LT, Confesor R, Richards RP (2015) Long-term and seasonal trend decomposition of Maumee river nutrient inputs to western Lake Erie. Envir. Sci. Technol. 49(6):3392–3400

    Article  Google Scholar 

  • Towler E, Rajagopalan B, Gilleland E, Summers RS, Yates D, Katz RW (2010) Modeling hydrologic and water quality extremes in a changing climate: a statistical approach based on extreme value theory. Water Resour Res 46(11). doi:10.1029/2009WR008876

  • Urban NR (2009) Nutrient cycling in Lake Superior: retrospective and update. In State of Lake Superior Ecovision World Monograph Series, Aquatic Ecosystem Health and Management Society; Munawar, M.; Munawar, I. F., Eds.; p. 83–115

  • Working Group III (2000) Special Report on Emissions Scenarios: A Special Report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge 599 pp

    Google Scholar 

  • Vogel RM, Stedinger JR, Hooper RP (2003) Discharge indices for water quality loads. Water Resour Res 39:1273

    Google Scholar 

  • Vogel RM, Rudolph BE, Hooper RP (2005) Probabilistic behavior of water-quality loads. J Environ Eng 131(7):1081–1089

    Article  Google Scholar 

  • Wellen C, Arhonditsis GB, Labencki T, Boyd D (2012) A Bayesian methodological framework for accommodating interannual variability of nutrient loading with the SPARROW model. Water Resour Res. doi:10.1029/2012WR011821

    Google Scholar 

  • Whitehead PG, Wilby RL, Battarbee RW, Kernan M, Wade AJA (2009) review of the potential impacts of climate change on surface water quality. J Hydrol Sci 54:101–123

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by award CBET-0725636 from the National Science Foundation. The authors would like to thank David Saad from the USGS Wisconsin Science Center for data and discussions regarding P loading. We also thank the reviewers of the manuscript for their insightful suggestions for improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Mayer.

Additional information

Responsible Editor: J.M. Melack

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

LaBeau, M., Mayer, A., Griffis, V. et al. The importance of considering shifts in seasonal changes in discharges when predicting future phosphorus loads in streams. Biogeochemistry 126, 153–172 (2015). https://doi.org/10.1007/s10533-015-0149-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-015-0149-5

Keywords

Navigation