Skip to main content

Advertisement

Log in

Net anthropogenic phosphorus inputs and riverine phosphorus fluxes in highly populated headwater watersheds in China

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Riverine phosphorus (P) levels in headwaters are a worldwide concern for environmental management due to the sensitivity of freshwater ecosystems to phosphorus loads. Here, we evaluate P in the Huai River Basin of China, a watershed with one of the highest intensities of human-activity in the world. Estimates of net anthropogenic phosphorus inputs (NAPI) were obtained by accounting for the main anthropogenic phosphorus inputs in each watershed of the basin, including fertilizer application, net food and feed import, non-food P and seeding P. Multi-year average (2003–2010) anthropogenic inputs of P to the entire basin were 2700 kg P km−2 year−1, with an average amount of 1800 kg P km−2 year−1 entering its 17 headwater watersheds. Fertilizer application was the largest source of new P across the headwater watersheds (about 70 % of NAPI), followed by P content of imported food and feed (24 %) and non-food P (6 %). Riverine total phosphorus (TP) fluxes showed a significant linear relationship with NAPI, with an average 3.2 % of NAPI exported as riverine TP flux. Our result indicates that NAPI could be a good indicator for assessing the risk of regional P loss, as well as an excellent potential predictor of riverine TP flux. A comparison of our results with other similar analyses suggests that around 3 % of NAPI would be exported as riverine TP loads, although fractional export of P may vary significantly regionally. Corresponding P management should be targeted at the main anthropogenic sources and hot-spot areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahn H, James RT (2001) Variability, uncertainty, and sensitivity of phosphorus deposition load estimates in South Florida Water. Air Soil Pollut 126:37–51

    Article  Google Scholar 

  • Alexander RB, Johnes PJ, Boyer EW, Smith RA (2002) A comparison of models for estimating the riverine export of nitrogen from large watersheds. Biogeochemistry 57–58:295–339. doi:10.1023/a:1015752801818

    Article  Google Scholar 

  • Anderson KA, Downing JA (2006) Dry and wet atmospheric deposition of nitrogen, phosphorus and silicon in an agricultural region Water. Air Soil Pollut 176:351–374

    Article  Google Scholar 

  • Bai X, Shi P (2006) Pollution control. in China’s Huai River Basin: what lessons for sustainability? Environ Sci Policy Sustain Dev 48:22–38. doi:10.3200/envt.48.7.22-38

    Article  Google Scholar 

  • Billen G, Garnier J, Lassaletta L (2013) The nitrogen cascade from agricultural soils to the sea: modelling nitrogen transfers at regional watershed and global scales. Philos Trans R Soc Lond Ser B Biol Sci 368:1–13. doi:10.1098/rstb.2013.0123

    Article  Google Scholar 

  • Boyer EW, Goodale CL, Jaworski NA, Howarth RW (2002) Anthropogenic nitrogen sources and relationships to riverine nitrogen export in the northeastern U.S.A. Biogeochemistry 57–58:137–169. doi:10.1023/a:1015709302073

    Article  Google Scholar 

  • Carpenter SR (2005) Eutrophication of aquatic ecosystems: bistability and soil phosphorus. Proc Natl Acad Sci USA 102:10002–10005

    Article  Google Scholar 

  • Census COTFNP (2011) Manual of pollution census emission coefficient. China Environmental Science Press, Beijing

    Google Scholar 

  • Chen J (2007) Rapid urbanization in China: a real challenge to soil protection and food security. CATENA 69:1–15. doi:10.1016/j.catena.2006.04.019

    Article  Google Scholar 

  • Chen D, Huang H, Hu M, Dahlgren R (2014) Influence of lag effect, soil release, and climate change on watershed anthropogenic nitrogen inputs and riverine export dynamics. Environ Sci Technol 48:5683–5690. doi:10.1021/es500127t

    Article  Google Scholar 

  • Chen D, Hu M, Guo Y, Dahlgren RA (2015) Influence of legacy phosphorus, land use, and climate change on anthropogenic phosphorus inputs and riverine export dynamics. Biogeochemistry 123:99–116. doi:10.1007/s10533-014-0055-2

    Article  Google Scholar 

  • David MB, Gentry LE (2000) Anthropogenic inputs of nitrogen and phosphorus and riverine export for Illinois. USA J Environ Qual 29:494–508. doi:10.2134/jeq2000.00472425002900020018x

    Article  Google Scholar 

  • Freeman MC, Pringle CM, Jackson CR (2007) Hydrologic connectivity and the contribution of stream headwaters to ecological integrity at regional scales. J Am Water Resour Assoc. doi:10.1111/j.1752-1688.2007.00002.x

    Google Scholar 

  • Han H, Allan JD (2008) Estimation of nitrogen inputs to catchments: comparison of methods and consequences for riverine export prediction. Biogeochemistry 91:177–199. doi:10.1007/s10533-008-9279-3

    Article  Google Scholar 

  • Han H, Bosch N, Allan JD (2010) Spatial and temporal variation in phosphorus budgets for 24 watersheds in the Lake Erie and Lake Michigan basins. Biogeochemistry 102:45–58. doi:10.1007/s10533-010-9420-y

    Article  Google Scholar 

  • Han Y, Li X, Nan Z (2011a) Net anthropogenic nitrogen accumulation in the Beijing metropolitan region. Environ Sci Pollut Res 18:485–496. doi:10.1007/s11356-010-0394-z

    Article  Google Scholar 

  • Han Y, Li X, Nan Z (2011b) Net anthropogenic phosphorus accumulation in the Beijing metropolitan region. Ecosystems 14:445–457

    Article  Google Scholar 

  • Han H, Allan JD, Bosch NS (2012) Historical pattern of phosphorus loading to Lake Erie watersheds. J Great Lakes Res 38:289–298. doi:10.1016/j.jglr.2012.03.004

    Article  Google Scholar 

  • Han Y, Yu X, Wang X, Wang Y, Tian J, Xu L, Wang C (2013) Net anthropogenic phosphorus inputs (NAPI) index application in Mainland China. Chemosphere 90:329–337. doi:10.1016/j.chemosphere.2012.07.023

    Article  Google Scholar 

  • Han Y et al (2014) Net anthropogenic nitrogen inputs (NANI) index application in Mainland China. Geoderma 213:87–94. doi:10.1016/j.geoderma.2013.07.019

    Article  Google Scholar 

  • Hong B et al (2012) Evaluating regional variation of net anthropogenic nitrogen and phosphorus inputs (NANI/NAPI), major drivers, nutrient retention pattern and management implications in the multinational areas of Baltic Sea basin. Ecol Model 227:117–135. doi:10.1016/j.ecolmodel.2011.12.002

    Article  Google Scholar 

  • Hong B, Swaney DP, Howarth RW (2013) Estimating net anthropogenic nitrogen inputs to U.S. watersheds: comparison of methodologies. Environ Sci Technol 47:5199–5207. doi:10.1021/es303437c

    Article  Google Scholar 

  • Howarth R et al (1996) Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: Natural and human influences. Biogeochemistry 35:75–139. doi:10.1007/bf02179825

    Article  Google Scholar 

  • Howarth R et al (2012) Nitrogen fluxes from the landscape are controlled by net anthropogenic nitrogen inputs and by climate. Front Ecol Environ 10:37–43. doi:10.1890/100178

    Article  Google Scholar 

  • Jarvie HP, Sharpley AN, Spears B, Buda AR, May L, Kleinman PJ (2013) Water quality remediation faces unprecedented challenges from “legacy phosphorus”. Environ Sci Technol 47:8997–8998

    Article  Google Scholar 

  • Ji W et al (2013) Spatiotemporal variation of surface water quality for decades: a case study of Huai River System, China. Water Sci Technol 68:1233–1241. doi:10.2166/wst.2013.319

    Article  Google Scholar 

  • Ju XT et al (2009) Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc Natl Acad Sci USA 106:3041–3046. doi:10.1073/pnas.0813417106

    Article  Google Scholar 

  • Li S, Jin J (2011) Characteristics of nutrient input/output and nutrient balance in different regions of China. Sci Agric Sin 44:4207–4229. doi:10.3864/j.issn.0578-1752.2011.20.009

    Google Scholar 

  • Lin JY (1997) Institutional reforms and dynamics of agricultural growth in China. Food Policy 22:201–212

    Article  Google Scholar 

  • Liu J, Lundqvist J, Weinberg J, Gustafsson J (2013) Food losses and waste in China and their implication for water and land. Environ Sci Technol 47:10137–10144. doi:10.1021/es401426b

    Google Scholar 

  • Mahowald N et al (2008) Global distribution of atmospheric phosphorus sources, concentrations and deposition rates, and anthropogenic impacts. Global Biogeochem Cycles. doi:10.1029/2008GB003240

    Google Scholar 

  • McMahon G, Woodside MD (1997) Nutrient mass balance for the Albemarle-Pamlico drainage basin, North Carolina and Virginia, 1990 Jawra. J Am Water Resour Assoc 33:573–589

    Article  Google Scholar 

  • Ministry of Environmental Protection of China M (2002) Environmental quality standards for surface water (GB 3838-2002). China Environmental Science Press, Beijing

    Google Scholar 

  • Peterson BJ et al (2001) Control of nitrogen export from watersheds by headwater streams. Science 292:86–90. doi:10.1126/science.1056874

    Article  Google Scholar 

  • Rajendran K, Aslanzadeh S, Taherzadeh MJ (2012) Household biogas digesters—a review. Energies 5:2911–2942

    Article  Google Scholar 

  • Reddy KR, Kadlec RH, Flaig E, Gale PM (1999) Phosphorus retention in streams and wetlands: a review. Crit Rev Environ Sci Technol 29:83–146. doi:10.1080/10643389991259182

    Article  Google Scholar 

  • Runkel RL, Crawford CG, Cohn TA (2004) Load estimator (LOADEST): a FORTRAN program for estimating constituent loads in streams and rivers. US Department of the Interior, US Geological Survey

    Google Scholar 

  • Russell MJ, Weller DE, Jordan TE, Sigwart KJ, Sullivan KJ (2008) Net anthropogenic phosphorus inputs: spatial and temporal variability in the Chesapeake Bay region. Biogeochemistry 88:285–304. doi:10.1007/s10533-008-9212-9

    Article  Google Scholar 

  • Sharpley AN, McDowell RW, Kleinman PJ (2001) Phosphorus loss from land to water: integrating agricultural and environmental management. Plant Soil 237:287–307

    Article  Google Scholar 

  • Shi P et al (2012) Effects of land-use and climate change on hydrological processes in the upstream of Huai River. China Water Resour Manag 27:1263–1278. doi:10.1007/s11269-012-0237-4

    Article  Google Scholar 

  • Sobota DJ, Harrison JA, Dahlgren RA (2011) Linking dissolved and particulate phosphorus export in rivers draining California’s Central Valley with anthropogenic sources at the regional scale. J Environ Qual 40:1290–1302. doi:10.2134/jeq2011.0010

    Article  Google Scholar 

  • Stanley EH, Doyle MW (2002) A geomorphic perspective on nutrient retention following dam removal. Bioscience 52:693–701. doi:10.1641/0006-3568(2002)052[0693:agponr]2.0.co;2

  • Stigliani WM, Doelman P, Salomons W, Schulin R, Smidt GRB, Van der Zee SE (1991) Chemical time bombs: predicting the unpredictable. Environment 33:4–30

    Article  Google Scholar 

  • Swaney DP, Hong B, Ti C, Howarth RW, Humborg C (2012) Net anthropogenic nitrogen inputs to watersheds and riverine N export to coastal waters: a brief overview. Curr Opin Environ Sustain 4:203–211. doi:10.1016/j.cosust.2012.03.004

    Article  Google Scholar 

  • van Breemen N et al (2002) Where did all the nitrogen go? Fate of nitrogen inputs to large watersheds in the northeastern U.S.A. Biogeochemistry 57–58:267–293. doi:10.1023/a:1015775225913

    Article  Google Scholar 

  • Van Horn H (1998) Factors affecting manure quantity, quality, and use. In: Proceedings of the mid-south ruminant nutrition conference, Dallas-Ft. Worth. Texas Animal Nutrition Council publication, pp 113-125

  • Wipfli MS, Richardson JS, Naiman RJ (2007) Ecological linkages between headwaters and downstream ecosystems: transport of organic matter, invertebrates, and wood down headwater channels. J Am Water Resour Assoc 43:72–85. doi:10.1111/j.1752-1688.2007.00007.x

    Article  Google Scholar 

  • Withers PJ, Jarvie HP (2008) Delivery and cycling of phosphorus in rivers: a review. Sci Tot Environ 400:379–395. doi:10.1016/j.scitotenv.2008.08.002

    Article  Google Scholar 

  • Xia J, Zhang YY, Zhan C, Ye AZ (2011) Water quality management in China: the case of the Huai River Basin. Int J Water Resour Dev 27:167–180. doi:10.1080/07900627.2010.531453

    Article  Google Scholar 

  • Yang Y (2004) China food ingredient table. Peking Univeisity Medical Press, Beijing

    Google Scholar 

  • Zhang H, Huang GH (2011) Assessment of non-point source pollution using a spatial multicriteria analysis approach. Ecol Model 222:313–321. doi:10.1016/j.ecolmodel.2009.12.011

    Article  Google Scholar 

  • Zhang WS, Swaney DP, Li XY, Hong B, Howarth RW, Ding SH (2015) Anthropogenic point-source and non-point-source nitrogen inputs into Huai River basin and their impacts on riverine ammonia–nitrogen flux. Biogeosciences 12:4275–4289. doi:10.5194/bg-12-4275-2015

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Key Research Program of The Chinese Academy of Sciences (NO. KZZD-EW-10-02-3), the State Key Laboratory of Urban and Regional Ecology scientific project (No. SKLURE2013-1-05) and National Natural Science Foundation (No. 41171395 and 41401590). The authors wish to express their gratitude to the China Scholarship Council (201408110138) for funding the visiting venture that generated this paper, and to Huai River Basin Water Resources Protection Bureau and Hydrologic Information Center of Huai River Commission for providing water quality and hydrological data. We also thank the reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuyong Li.

Additional information

Responsible Editor: Jonathan Sanderman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Swaney, D.P., Hong, B. et al. Net anthropogenic phosphorus inputs and riverine phosphorus fluxes in highly populated headwater watersheds in China. Biogeochemistry 126, 269–283 (2015). https://doi.org/10.1007/s10533-015-0145-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-015-0145-9

Keywords

Navigation