Skip to main content
Log in

Dependence of ombrotrophic peat nitrogen on phosphorus and climate

  • Biogeochemistry Letters
  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Nitrogen (N) is a key, possibly limiting, nutrient in ombrotrophic peat ecosystems, and enrichment by pollutant N in atmospheric deposition (Ndep, g m−2 a−1) is of concern with regard to peatland damage. We collated data on the N content of surface (depth ≤25 cm, mean 15 cm) ombrotrophic peat (Nsp) for 215 sites in the UK and 62 other sites around the world, including boreal, temperate and tropical locations (wider global data), and found Nsp to range from 0.5 to 4 %. We examined the dependences of Nsp on surface peat phosphorus (P) content (Psp), mean annual precipitation (MAP), mean annual temperature (MAT) and Ndep. Linear regression on individual independent variables showed highly significant (p < 0.001) correlations of Nsp with Psp(r2 = 0.23) and MAP (r2 = 0.14), and significant (p < 0.01) but weaker correlations with MAT (r2 = 0.03) and Ndep (r2 = 0.03). A multiple regression model using log-transformed values explained 36 % of the variance of the UK data, 84 % of the variance of the wider global data, and 47 % of the variance of the combined data, all with high significance (p < 0.001). In all three cases, most of the variance was explained by Psp and MAP, but in view of a positive correlation between MAP and MAT for many of the sites, a role for MAT in controlling Nsp cannot be ruled out. There is little evidence for an effect of Ndep on Nsp. The results point to a key role of P in N fixation, and thereby C fixation, in ombrotrophic peats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  • Aerts R, Wallen B, Malmer N (1992) Growth-limiting nutrients in sphagnum-dominated bogs subject to low and high atmospheric nitrogen supply. J Ecol 80:131–140

    Article  Google Scholar 

  • Andersen R, Chapman SJ, Artz RRE (2013) Microbial communities in natural and disturbed peatlands: a review. Soil Biol Biochem 57:979–994

    Article  Google Scholar 

  • Anderson JAR (1983) The tropical peat swamps of western Malesia. In: Gore AJP (ed) Ecosystems of the world 4B. Mires: swamp, bog, fen and moor. Elsevier, Amsterdam

    Google Scholar 

  • Augusto L, Delerue F, Gallet-Budynek A, Achat DL (2013) Global assessment of limitation to symbiotic nitrogen fixation by phosphorus availability in terrestrial ecosystems using a meta-analysis approach. Global Biogeochem Cycles 27:804–815

    Article  Google Scholar 

  • Batterman SA, Wurzburger N, Hedin LO (2013) Nitrogen and phosphorus interact to control tropical symbiotic N2 fixation: a test in Inga punctata. J Ecol 101:1400–1408

    Article  Google Scholar 

  • Berendse F, Van Breemen N, Rydin H, Buttler A, Heijmans M, Hoosbeek MR, Lee JA, Mitchell E, Saarinen T, Vasander H, Wallen B (2001) Raised atmospheric CO2 levels and increased N deposition cause shifts in plant species composition and production in Sphagnum bogs. Global Change Biol 7:591–598

    Article  Google Scholar 

  • Bragazza L, Gerdol R (1999) Hydrology, groundwater chemistry and peat chemistry in relation to habitat conditions in a mire on the South-eastern Alps of Italy. Plant Ecol 144:243–256

    Article  Google Scholar 

  • Bragazza L, Gerdol R (2002) Are nutrient availability and acidity-alkalinity gradients related in Sphagnum-dominated peatlands? J Veg Sci 13:473–482

    Article  Google Scholar 

  • Bragazza L, Tahvanainen T, Kutnar L, Rydin H, Limpens J, Hajek M, Grosvernier P, Hajek T, Hajkova P, Hansen I, Iacumin P, Gerdol R (2004) Nutritional constraints in ombrotrophic Sphagnum plants under increasing atmospheric nitrogen deposition in Europe. New Phytol 163:609–616

    Article  Google Scholar 

  • Bragazza L, Rydin H, Gerdol R (2005a) Multiple gradients in mire vegetation: a comparison of a Swedish and an Italian bog. Plant Ecol 177:223–236

    Article  Google Scholar 

  • Bragazza L, Limpens J, Gerdol R, Grosvernier P, Hájek M, Hájek T, Hajkova P, Hansen I, Iacumin P, Kutnar L, Rydin H, Tahvanainen T (2005b) Nitrogen concentration and δ15N signature of ombrotrophic Sphagnum mosses at different N deposition levels in Europe. Glob Change Biol 11:106–114

    Article  Google Scholar 

  • Bragazza L, Freeman C, Jones T, Rydin H, Limpens J, Fenner N, Ellis T, Gerdol R, Hajek M, Hajek T, Lacumin P, Kutnar L, Tahvanainen T, Toberman H (2006) Atmospheric nitrogen deposition promotes carbon loss from peat bogs. Proc Natl Acad Sci USA 103:19386–19389

    Article  Google Scholar 

  • Bridgham SD, Updegraff K, Pastor J (1998) Carbon, nitrogen, and phosphorus mineralization in northern wetlands. Ecology 79:1545–1561

    Article  Google Scholar 

  • Chapman S, Buttler A, Francez A, Laggoun-Defarge F, Vasander H, Schloter M, Combe J, Grosvernier P, Harms H, Epron D, Gilbert D, Mitchell E (2003) Exploitation of northern peatlands and biodiversity maintenance: a conflict between economy and ecology. Front Ecol Environ 1:525–532

    Article  Google Scholar 

  • Cheesman AW, Turner BL, Reddy KR (2012) Soil Phosphorus forms along a strong nutrient gradient in a tropical ombrotrophic wetland. Soil Sci Soc Am J 76:1496–1506

    Article  Google Scholar 

  • Clarkson BR, Schipper LA (2004) Vegetation and peat characteristics of restiad bogs on Chatham Island (Rekohu), New Zealand. N Z J Bot 43:293–312

    Article  Google Scholar 

  • Clarkson BR, Schipper LA, Lehmann A (2004) Vegetation and peat characteristics in the development of lowland restiad peat bogs, North Island, New Zealand. Wetlands 24:133–151

    Article  Google Scholar 

  • Cleveland CC, Townsend AR, Schimel DS, Fisher H, Howarth RW, Hedin LO, Perakis SS, Latty EF, Von Fischer JC, Elseroad A, Wasson MF (1999) Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems. Global Biogeochem Cycles 13:623–645

    Article  Google Scholar 

  • Cockerton HE, Holmes JA, Street-Perrott FA, Ficken KJ (2014) Holocene dust records from the West African Sahel and their implications for changes in climate and land surface conditions. J Geophys Res Atmos 119:8684–8694

    Article  Google Scholar 

  • Cramer WP, Leemans R (2001) Global 30-year mean monthly climatology, 1930–1960, Version 2.1 (Cramer and Leemans). Data set from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, USA

  • Damman AWH (1978) Distribution and movement of elements in ombrotrophic peat bogs. Oikos 30:480–495

    Article  Google Scholar 

  • DeLuca TH, Zackrisson O, Gundale MJ, Nilsson M-C (2008) Ecosystem feedbacks and nitrogen fixation in boreal forests. Science 320:1181

    Article  Google Scholar 

  • Dentener FJ (2006) Global maps of atmospheric nitrogen deposition, 1860, 1993, and 2050. Data set from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee

  • Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10:1135–1142

    Article  Google Scholar 

  • Emmett BA, Reynolds B, Chamberlain PM, Rowe E, Spurgeon D, Brittain SA,Frogbrook Z, Hughes S, Lawlor AJ, Poskitt J, Potter E, Robinson DA, ScottA, Wood C, Woods C (2010) Countryside survey: soils report from 2007. Technical Report No. 9/07 NERC/Centre for Ecology and Hydrology (CEH Project Number: C03259)

  • FowlerD O’Donoghue M, Muller J, Smith R, Dragosits U, Skiba U, Sutton M, Brimblecombe P (2004) A chronology of nitrogen deposition in the UK between 1900 and 2000. Wat Air Soil Pollut 4:9–23

    Article  Google Scholar 

  • Fritz C, van Dijk G, Smolders AJP, Pancotto VA, Elzenga TJTM, Roelofs JGM, Grootjans AP (2012) Nutrient additions in pristine Patagonian Sphagnum bog vegetation: can phosphorus addition alleviate (the effects of) increased nitrogen loads. Plant Biol 14:491–499

    Article  Google Scholar 

  • Frolking S, Roulet NT, Tuittila E, Bubier JL, Quillet A, Talbot J, Richard PJH (2010) A new model of Holocene peatland net primary production, decomposition, water balance, and peat accumulation. Earth Syst Dyn 1:1–21

    Article  Google Scholar 

  • Gundale MJ, Gustafsson H, Nilsson M-C (2009) The sensitivity of nitrogen fixation by a feathermoss-cyanobacteria association to litter and moisture variability in young and old boreal forests. Can J For Res 39:2542–2549

    Article  Google Scholar 

  • Gunnarsson U, Rydin H (2000) Nitrogen fertilization reduces Sphagnum production in bog communities. New Phytol 147:527–537

    Article  Google Scholar 

  • Hayati AA, Proctor MCF (1991) Limiting nutrrients in acid-mire vegetation—peat and plant analyses and experiments on plant responses to added nutrients. J Ecol 79:75–95

    Article  Google Scholar 

  • Heinemeyer A, Croft S, Garnett MH, Gloor E, Holden J, Lomas MR, Ineson P (2010) The MILLENNIA peat cohort model: predicting past, present and future soil carbon budgets and fluxes under changing climates in peatlands. Clim Res 45:207–226

    Article  Google Scholar 

  • Hemond HF (1983) The nitrogen budget of Thoreau’s bog. Ecology 64:99–109

    Article  Google Scholar 

  • Hill BH, Elonen CM, Jicha TM, Kolka RK, Lehto LLP, Sebestyen SD, Seifert-Monson LR (2014) Ecoenzymatic stoichiometry and microbial processing of organic matter in northern bogs and fens reveals a common P-limitation between peatland types. Biogeochem 120:203–224

    Article  Google Scholar 

  • Houlton BZ, Wang YP, Vitousek P, Field CB (2008) A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature 454:327–331

    Article  Google Scholar 

  • Hudson G, Lilly A, Higgins A, Jordan C, Donnelly D, Baggaley NJ, Fealy R (2012) Harmonisation of 1:250 000 scale soil maps and soil profile data in the Celtic fringe of Europe: Scotland, Northern Ireland and Eire. Test case report. D4.3 Data Harmonization Best Practice Guidelines, GS Soil Final Report to the European Commission, ECP-2008-GEO-318004

  • Jackson BG, Martin P, Nilsson M-C, Wardle DA (2011) Response of feather moss associated N2 fixation and litter decomposition to variations in simulated rainfall intensity and frequency. Oikos 120:570–581

    Article  Google Scholar 

  • Jauhiainen J, Silvennoinen H, Hämäläinen R, Kusin K, Limin S, Raison RJ, Vasander H (2012) Nitrous oxide fluxes from tropical peat with different disturbance history and management. Biogeosciences 9:1337–1350. doi:10.5194/bg-9-1337-2012

  • Joint Nature Conservation Committee (2011) Towards an assessment of the state of UK Peatlands. JNCC, Peterborough

    Google Scholar 

  • Keller JK, Bauers AK, Bridgham SD, Kellogg LE, Iversen CM (2006) Nutrient control of microbial carbon cycling along an ombrotrophic-minerotrophic peatland gradient. J Geophys Res 111:G03006

    Google Scholar 

  • Larmola T, Bubier JL, Kobyljanec C, Basiliko N, Juutinen S, Humphreys E, Preston M, Moore TR (2013) Vegetation feedbacks of nutrient addition lead to a weaker carbon sink in an ombrotrophic bog. Glob Change Biol 19:3729–3739

    Article  Google Scholar 

  • Limpens J, Berendse F, Klees H (2004) How phosphorus availability affects the impact of nitrogen deposition on Sphagnum and vascular plants in bogs. Ecosystems 7:793–804

    Article  Google Scholar 

  • Limpens J, Berendse F, Blodau C, Canadell JG, Freeman C, Holden J, Roulet N, Rydin H, Schaepman-Strub G (2008) Peatlands and the carbon cycle: from local processes to global implications—a synthesis. Biogeosciences 5:1475–1491

    Article  Google Scholar 

  • Limpens J, Granath G, Gunnarsson U, Aerts R, Bayley S, Bragazza L, Bubier J, Buttler A, van den Berg LJL, Francez AJ, Gerdol R, Grosvernier P, Heijmans MMPD, Hoosbeek MR, Hotes S, Ilomets M, Leith I, Mitchell EAD, Moore T, Nilsson MB, Nordbakken JF, Rochefort L, Rydin H, Sheppard LJ, Thormann M, Wiedermann MM, Williams BL, Xu B (2011) Climatic modifiers of the response to nitrogen deposition in peat-forming Sphagnum mosses: a meta-analysis. New Phytol 191:496–507

    Article  Google Scholar 

  • Lindo Z, Nilsson M-C, Gundale MJ (2013) Bryophyte-cyanobacteria associations as regulators of the northern latitude carbon balance in response to global change. Global Change Biol 19:2022–2035

    Article  Google Scholar 

  • Lindsay R (2010) Peatbogs and carbon: a critical synthesis to inform policy development in oceanic peat bog conservation and restoration in the context of climate change. Report to RSPB Scotland

  • Loisel J, Yu Z, Beilman DW, Camill P, Alm J, Amesbury MJ, Anderson D, Andersson S, Bochicchio C, Barber K, Belyea LR, Bunbury J, Chambers FM, Charman DJ, De Vleeschouwer F, Fialkiewicz-Koziel B, Finkelstein SA, Galka M, Garneau M, Hammarlund D, Hinchcliffe W, Holmquist J, Hughes P, Jones MC, Klein ES, Kokfelt U, Korhola A, Kuhry P, Lamarre A, Lamentowicz M, Large D, Lavoie M, MacDonald G, Magnan G, Makila M, Mallon G, Mathijssen P, Mauquoy D, McCarroll J, Moore TR, Nichols J, O’Reilly B, Oksanen P, Packalen M, Peteet D, Richard PJH, Robinson S, Ronkainen T, Rundgren M, Sannel ABK, Tarnocai C, Thom T, Tuittila E-S, Turetsky M, Valiranta M, van der Linden M, van Geel B, van Bellen S, Vitt D, Zhao Y, Zhou W (2014) A database and synthesis of northern peatland soil properties and Holocene carbon and nitrogen accumulation. Holocene 24:1028–1042

    Article  Google Scholar 

  • Malmer N (1998) Patterns in the growth and the accumulation of inorganic constituents in the Sphagnum coveron ombrotrophic bogs in Scandinavia. Oikos 53:105–120

    Article  Google Scholar 

  • Martin NJ, Holding AJ (1978) Nutrient availability and other factors limiting microbial activity in the blanket peat. In: Heal OW, Perkins DF (eds) Production ecology of british moors and montane grasslands. Springer, Berlin, pp 113–135

    Chapter  Google Scholar 

  • Minkkinen K, Vasander H, Jauhiainen S, Karsisto M, Laine J (1999) Post-drainage changes in vegetation composition and carbon balance in Lakkasuo mire, Central Finland. Plant Soil 207:107–120

    Article  Google Scholar 

  • Moore TR, Trofymow JA, Siltanen M, Kozak LM (2008) Litter decomposition and nitrogen and phosphorus dynamics in peatlands and uplands over 12 years in central Canada. Oecologia 157:317–325

    Article  Google Scholar 

  • Neff JC, Ballantyne AP, Farmer GL, Mahowald NM, Conroy JL, Landry CC, Overpeck JT, Painter TH, Lawrence CR, Reynolds RL (2008) Increasing eolian dust deposition in the western United States linked to human activity. Nat Geosci 1:189–195

    Article  Google Scholar 

  • Ollivier J, Toewe S, Bannert A, Hai B, Kastl E-M, Meyer A, Su MX, Kleineidam K, Schloter M (2011) Nitrogen turnover in soil and global change. FEMS Microbiol Ecol 78:3–16

    Article  Google Scholar 

  • Page SE, Rieley JO, Shotyk OW, Weiss D (1999) Interdependence of peat and vegetation in a tropical peat swamp forest. Phil Trans R Soc Lond Ser B-Biol Sci 354:1885–1897

    Article  Google Scholar 

  • Pajunen H (1994) Physical and chemical properties of peat in Rwanda, Central Africa. Bull Geol Soc Finl 394:1–61

    Google Scholar 

  • Pakarinen P, Gorham E (1984) Mineral element composition of Sphagnum fuscum peats collected from Minnesota, Mannitoba and Ontario. In: Spigarelli S (ed) Proceedings of the International Peat Symposium, October 1983 Bemidji State University, Bemidji, pp. 471–479

  • Phuyal M, Artz RRE, Sheppard L, Leith ID, Johnson D (2008) Long-term nitrogen deposition increases phosphorus limitation of bryophytes in an ombrotrophic bog. Plant Ecol 196:111–121

    Article  Google Scholar 

  • Ramchunder SJ, Brown LE, Holden J (2009) Environmental effects of drainage, drain-blocking and prescribed vegetation burning in UK upland peatlands. Prog Phys Geogr 33:49–79

    Article  Google Scholar 

  • Reed SC, Cleveland CC, Townsend AR (2013) Relationships among phosphorus, molybdenum and free-living nitrogen fixation in tropical rain forests: results from observational and experimental analyses. Biogeochemistry 114:135–147

    Article  Google Scholar 

  • Richardson CJ, Tilton DL, Kadlec JA, Chamie JPM, Wentz WA (1978) Nutrient dynamics of northern wetland ecosystems. In: Good RE, Whigham DF, Simpson RL (eds) Freshwater wetlands: ecological processes and management potential. Academic Press, New York, pp 217–241

    Google Scholar 

  • Rustad LE, Campbell JL, Marion GM, Norby RJ, Mitchell MJ, Hartley AE, Cornelissen JHC, Gurevitch J (2001) A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126:543–562

    Article  Google Scholar 

  • Rydin H, Jeglum JK (2013) The biology of peatlands, 2nd edn. Oxford University Press, Oxford

    Book  Google Scholar 

  • Small E (1972) Photosynthetic rates in relation to nitrogen recycling as an adaptation to nutrient deficiency in peat bog plants. Can J Bot 50:2227–2233

    Article  Google Scholar 

  • Smith RI, Fowler D, Sutton MA, Flechard C, Coyle M (2000) Regional estimation of pollutant gas dry deposition in the UK: model description, sensitivity analyses and outputs. Atmos Environ 34:3757–3777

    Article  Google Scholar 

  • Sprent JI, Raven JA (1985) Evolution of nitrogen-fixing symbioses. Proc Roy Soc Edinb 85:215–237

    Google Scholar 

  • Tipping EW, Smith EJ, Lawlor AJ, Lofts S, Simon BM, Vincent CD, Stidson R, Rey-Castro C, Longworth H, Reynolds B, Hughes S, Brittain SA (2003) Hydrochemistry of organic soils. Final CEH Report WI/C01259/2

  • Tipping E, Benham S, Boyle JF, Crow P, Davies J, Fischer U, Guyatt H, Helliwell R, Jackson-Blake L, Lawlor AJ, Monteith DT, Rowe EC, Toberman H (2014) Atmospheric deposition of phosphorus to land and freshwater. Environ Sci-Proc Impacts 16:1608–1617

    Article  Google Scholar 

  • Turetsky MR, Wieder RK, Williams CJ, Vitt DH (2000) Organic matter accumulation, peat chemistry, and permafrost melting in peatlands of boreal Alberta. Ecosci 7:379–392

    Google Scholar 

  • Turunen J, Roulet NT, Moore TR, Richard PJH (2004) Nitrogen deposition and increased carbon accumulation in ombrotrophic peatlands in eastern Canada. Global Biogeochem Cycles 18: GB3002, doi:10.1029/2003GB002154

  • Vile M, Wieder RK, Živković T, Scott K, Vitt D, Hartsock J, Iosue C, Quinn J, Petix M, Fillingim H, Popma JA, Dynarski K, Jackman T, Albright C, Wykoff D (2014) N2-fixation by methanotrophs sustains carbon and nitrogen accumulation in pristine peatlands. Biogeochem 121:317–328

    Article  Google Scholar 

  • Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman D (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7:737–750

    Google Scholar 

  • Vitousek PM, Menge DNL, Reed SC, Cleveland CC (2013) Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems. Philos Trans R Soc Lond B 368:20130119

    Article  Google Scholar 

  • Wang M, Moore TR, Talbot J, Richard PJH (2014) The cascade of C:N:P stoichiometry in anombrotrophic peatland: from plants to peat. Environ Res Lett 9: 024003 (7 pp)

  • Wang M, Moore TR, Talbot J, Riley JL (2015) The stoichiometry of carbon and nutrients in peat formation. Glob Biogeochem Cycles 29:doi:10.1002/2014GB005000

  • Weedon JT, Kowalchuk GA, Aerts R, van Hal J, van Logtestijn R, Tas N, Roling WFM, van Bodegom PM (2012) Summer warming accelerates sub-arctic peatland nitrogen cycling without changing enzyme pools or microbial community structure. Global Change Biol 18:138–150

    Article  Google Scholar 

  • White JR, Reddy KR (2000) Influence of phosphorus loading on organic nitrogen mineralization of everglades soils. Soil Sci Soc Am J 64:1525–1534

    Article  Google Scholar 

  • Wu Y, Blodau C (2013) PEATBOG: a biogeochemical model for analyzing coupled carbon and nitrogen dynamics in northern peatlands. Geosci Model Dev 6:1173–1207

    Article  Google Scholar 

  • Wu Y, Blodau C, Moore TR, Bubier JL, Juutinen S, Larmola T (2014) Effects of experimental nitrogen deposition on peatland carbon pools and fluxes: a modeling analysis. Biogeosci Disc 11:10271–10321

    Article  Google Scholar 

  • Yu ZC (2012) Northern peatland carbon stocks and dynamics: a review. Biogeosci 9:4071–4085

    Article  Google Scholar 

Download references

Acknowledgments

We thank Raija Laiho (University of Helsinki) for providing unpublished data. HT, ET, JFB and PAH were funded by the UK Natural Environment Research Council Macronutrient Cycles Programme (LTLS project, Grant no. NE/J011533/1), RCH and AL by the Rural and Environment Science and Analytical Services Division of the Scottish Government. We are grateful to T Moore for his constructive review comments. The outline map in Fig. 1 is used with the permission of Presentation Magazine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward Tipping.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 55 kb)

Supplementary material 2 (DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toberman, H., Tipping, E., Boyle, J.F. et al. Dependence of ombrotrophic peat nitrogen on phosphorus and climate. Biogeochemistry 125, 11–20 (2015). https://doi.org/10.1007/s10533-015-0117-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-015-0117-0

Keywords

Navigation