Skip to main content
Log in

Effect of open water pools on ecosystem scale surface-atmosphere carbon dioxide exchange in a boreal peatland

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Peatland carbon dioxide (CO2) exchange can vary spatially over a few meters because of the heterogeneity in plant communities, differing responses to environmental conditions, and the presence of pools in patterned peatlands. In contrast to the plant communities comprising a peatland’s vegetated surface, permanent pools that are characteristic of peatlands in temperate to subarctic regions are net sources of CO2 to the atmosphere. Measurements of net ecosystem CO2 exchange using the eddy covariance (EC) technique over peatlands without permanent pools do not show the smaller plant scale spatial heterogeneity in fluxes because the atmosphere mixes the variations in fluxes over the EC tower source area. However, if different vegetation communities and pools approach the spatial scale that they form a significant proportion of an EC tower’s source area, such as might be the case in peatlands with pools, they should be able to be discriminated if the surface fluxes by cover type are significantly different. In the present study, we evaluate if the observed variability in peatland surface CO2 exchange can be identified from 30-min net ecosystem CO2 exchange measurements using the proportion of the different plant communities or pools within the eddy covariance tower source area. Our results show that the variability in CO2 exchange at the local scale across the peatland surface has a measureable impact on the ecosystem level measurement, primarily when open water pools are present within the tower source area. Our results also suggest that large CO2 exchange rates measured above Sphagnum spp. hummocks with Picea mariana, combined with their large fractional contribution to the source area, counterbalanced the CO2 loss from the open water pools, explaining why the ecosystem as a whole was a net CO2 sink during the measurement period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aurela M, Tuovinen J-P, Laurila T (1998) Carbon dioxide exchange in a subarctic peatland ecosystem in northern Europe measured by the eddy covariance technique. J Geophys Res 103:11289–11301. doi:10.1029/98JD00481

    Article  Google Scholar 

  • Aurela M, Laurila T, Tuovinen JP (2001) Seasonal CO2 balances of a subarctic mire. J Geophys Res 106:1623–1637. doi:10.1029/2000JD900481

    Article  Google Scholar 

  • Aurela M, Laurila T, Tuovinen J-P (2002) Annual CO2 balance of a subarctic fen in northern Europe: importance of the wintertime efflux. J Geophys Res Atmos 107:4607. doi:10.1029/2002JD002055

    Article  Google Scholar 

  • Aurela M, Laurila T, Tuovinen J-P (2004) The timing of snow melt controls the annual CO2 balance in a subarctic fen. Geophys Res Lett 31:L16119. doi:10.1029/2004GL020315

    Article  Google Scholar 

  • Baldocchi DD (2003) Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Glob Change Biol 9:479–492. doi:10.1046/j.1365-2486.2003.00629.x

    Article  Google Scholar 

  • Baldocchi DD, Vogel CA, Hall B (1997) Seasonal variation of carbon dioxide exchange rates above and below a boreal jack pine forest. Agric For Meteorol 83:147–170. doi:10.1029/96JD03325

    Article  Google Scholar 

  • Bergeron O, Strachan IB (2011) CO2 sources and sinks in urban and suburban areas of a northern mid-latitude city. Atmos Environ 45:1564–1573. doi:10.1016/j.atmosenv.2010.12.043

    Article  Google Scholar 

  • Bubier JL, Crill PM, Moore TR et al (1998) Seasonal patterns and controls on net ecosystem CO2 exchange in a boreal peatland complex. Glob Biogeochem Cycles 12:703–714. doi:10.1029/98GB02426

    Article  Google Scholar 

  • Bubier JL, Frolking S, Crill PM, Linder E (1999) Net ecosystem productivity and its uncertainty in a diverse boreal peatland. J Geophys Res 104:27683–27692. doi:10.1029/1999JD900219

    Article  Google Scholar 

  • Bubier JL, Bhatia G, Moore TR et al (2003) Spatial and temporal variability in growing-season net ecosystem carbon dioxide exchange at a large peatland in Ontario, Canada. Ecosystems 6:353–367. doi:10.1007/S10021-003-0125-0

    Google Scholar 

  • Burba G, Schmidt A, Scott RL et al (2012) Calculating CO2 and H2O eddy covariance fluxes from an enclosed gas analyzer using an instantaneous mixing ratio. Glob Change Biol 18:385–399. doi:10.1111/j.1365-2486.2011.02536.x

    Article  Google Scholar 

  • Cliche Trudeau N, Garneau M, Pelletier L (2014) Interannual variability in the CO2 balance of a boreal patterned fen, James Bay, Canada. Biogeochemistry 118:371–387. doi:10.1007/s10533-013-9939-9

    Article  Google Scholar 

  • Crow SE, Wieder RK (2005) Sources of CO2 emission from a northern peatland: root respiration, exudation, and decomposition. Ecology 86:1825–1834. doi:10.1890/04-1575

    Article  Google Scholar 

  • Detto M, Montaldo N, Albertson JD et al (2006) Soil moisture and vegetation controls on evapotranspiration in a heterogeneous Mediterranean ecosystem on Sardinia, Italy. Water Resour Res 42:W08419. doi:10.1029/2005WR004693

    Google Scholar 

  • Falge E, Baldocchi D, Olson R et al (2001) Gap filling strategies for defensible annual sums of net ecosystem exchange. Agric For Meteorol 107:43–69. doi:10.1016/S0168-1923(00)00225-2

    Article  Google Scholar 

  • Forbrich I, Kutzbach L, Wille C et al (2011) Cross-evaluation of measurements of peatland methane emissions on microform and ecosystem scales using high-resolution landcover classification and source weight modelling. Agric For Meteorol 151:864–874. doi:10.1016/j.agrformet.2011.02.006

    Article  Google Scholar 

  • Frolking SE, Bubier JL, Moore TR et al (1998) Relationship between ecosystem productivity and photosynthetically active radiation for northern peatlands. Glob Biogeochem Cycles 12:115–126. doi:10.1029/97GB03367

    Article  Google Scholar 

  • Hamilton JD, Kelly CA, Rudd JWM et al (1994) Flux to the atmosphere of CH4 and CO2 from wetland ponds on the Hudson-Bay Lowlands (Hbls). J Geophys Res 99:1495–1510. doi:10.1029/93JD03020

    Article  Google Scholar 

  • Hsieh C-I, Katul G, Chi T (2000) An approximate analytical model for footprint estimation of scalar fluxes in thermally stratified atmospheric flows. Adv Water Resour 23:765–772. doi:10.1016/S0309-1708(99)00042-1

    Article  Google Scholar 

  • Humphreys ER, Lafleur PM, Flanagan LB et al (2006) Summer carbon dioxide and water vapor fluxes across a range of northern peatlands. J Geophys Res Biogeosciences 111:G04011. doi:10.1029/2005JG000111

    Article  Google Scholar 

  • Lafleur PM, Roulet NT, Admiral SW (2001) Annual cycle of CO2 exchange at a bog peatland. J Geophys Res 106:3071–3081. doi:10.1029/2000JD900588

    Article  Google Scholar 

  • Laine A, Sottocornola M, Kiely G et al (2006) Estimating net ecosystem exchange in a patterned ecosystem: example from blanket bog. Agric For Meteorol 138:231–243. doi:10.1016/j.agrformet.2006.05.005

    Article  Google Scholar 

  • Laine A, Riutta T, Juutinen S et al (2009) Acknowledging the spatial heterogeneity in modelling/reconstructing carbon dioxide exchange in a northern aapa mire. Ecol Model 220:2646–2655. doi:10.1016/j.ecolmodel.2009.06.047

    Article  Google Scholar 

  • Laurila T, Aurela M, Tuovinen J-P (2012) Eddy covariance measurements over wetlands. In: Aubinet M, Vesala T, Papale D (eds) Eddy covariance. Springer, New York, pp 345–364

    Chapter  Google Scholar 

  • Leppälä M, Kukko-Oja K, Laine J, Tuittila E-S (2008) Seasonal dynamics of CO2 exchange during primary succession of boreal mires as controlled by phenology of plants. Ecoscience 15:460–471. doi:10.2980/15-4-3142

    Article  Google Scholar 

  • Lloyd J, Taylor JA (1994) On the temperature dependence of soil respiration. Funct Ecol 8:315–323. doi:10.2307/2389824

  • Lund M, Lafleur PM, Roulet NT et al (2010) Variability in exchange of CO2 across 12 northern peatland and tundra sites. Glob Change Biol 16:2436–2448. doi:10.1111/j.1365-2486.2009.02104.x

    Google Scholar 

  • Maanavilja L, Riutta T, Aurela M et al (2011) Spatial variation in CO2 exchange at a northern aapa mire. Biogeochemistry 104:325–345. doi:10.1007/s10533-010-9505-7

    Article  Google Scholar 

  • McEnroe NA, Roulet NT, Moore TR, Garneau M (2009) Do pool surface area and depth control CO2 and CH4 fluxes from an ombrotrophic raised bog, James Bay, Canada? J Geophys Res 114:G01001. doi:10.1029/2007JG000639

    Google Scholar 

  • Pelletier L, Garneau M, Moore TR (2011) Variation in CO2 exchange over three summers at microform scale in a boreal bog, Eastmain region, Québec, Canada. J Geophys Res 116:G03019. doi:10.1029/2011JG001657

    Google Scholar 

  • Pelletier L, Strachan IB, Garneau M, Roulet NT (2014) Carbon release from boreal peatland open water pools: implication for the contemporary C exchange. J Geophys Res 119:2013JG002423. doi:10.1002/2013JG002423

    Google Scholar 

  • Pelletier L, Strachan IB, Roulet NT, Garneau M (2015) Can boreal peatlands with pools be net sinks for CO2? Environ Res Lett 10:035002. doi:10.1088/1748-9326/10/3/035002

    Article  Google Scholar 

  • Repo ME, Huttunen JT, Naumov AV et al (2007) Release of CO2 and CH4 from small wetland lakes in western Siberia. Tellus Ser B 59:788–796. doi:10.1111/j.1600-0889.2007.00301.x

    Article  Google Scholar 

  • Riutta T, Laine J, Aurela M et al (2007) Spatial variation in plant community functions regulates carbon gas dynamics in a boreal fen ecosystem. Tellus Ser B 59:838–852. doi:10.1111/j.1600-0889.2007.00302.x

    Article  Google Scholar 

  • Roulet NT, Jano A, Kelly CA et al (1994) Role of the Hudson-Bay lowland as a source of atmospheric methane. J Geophys Res 99:1439–1454. doi:10.1029/93JD00261

    Article  Google Scholar 

  • Silvola J, Alm J, Ahlholm U et al (1996) CO2 fluxes from peat in boreal mires under varying temperature and moisture conditions. J Ecol 84:219–228. doi:10.2307/2261357

    Article  Google Scholar 

  • Strilesky SL, Humphreys ER (2012) A comparison of the net ecosystem exchange of carbon dioxide and evapotranspiration for treed and open portions of a temperate peatland. Agric For Meteorol 153:45–53. doi:10.1016/j.agrformet.2011.06.006

    Article  Google Scholar 

  • Waddington JM, Roulet NT (1996) Atmosphere-wetland carbon exchanges: scale dependency of CO2 and CH4 exchange on the developmental topography of a peatland. Glob Biogeochem Cycles 10:233–245

  • Waddington JM, Roulet NT (2000) Carbon balance of a boreal patterned peatland. Glob Change Biol 6:87–97. doi:10.1046/j.1365-2486.2000.00283.x

    Article  Google Scholar 

  • White M (2011) Modèle de développement des tourbières minérotrophes aqualysées du Haut-Boréal québecois. MSc thesis. Université Laval

  • Yu Z, Loisel J, Brosseau DP et al (2010) Global peatland dynamics since the last glacial maximum. Geophys Res Lett 37:L13402. doi:10.1029/2010GL043584

    Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the financial support of the National Sciences and Engineering Research Council of Canada through an NSERC-CRD grant to MG and a Discovery Grant to IBS. LP was funded through fellowships from NSERC (PGSD), the McConnell Foundation and the McGill Graduate Excellence program. The authors would like to thank Manuel Helbig (Département de Géographie, Université de Montréal) for discussions leading to Fig. 3; Caitlin Watt and Mathias Messager (McGill) for the remote sensing analysis; Dr. O. Bergeron for invaluable Matlab assistance; Dr. J.L. Bubier (Mount Holyoke College) and Dr. T.R. Moore (McGill) for discussion and suggestions on specific aspects of the manuscript; Dr. A. Tremblay and J-L. Fréchette (Hydro Quebec) for technical support; and the field and lab assistance of H. Asnong, A. Lamalice, V. Lefrancois, J. Minville (UQAM); M.-C. Bonneville, M. Dalva, E. Christensen, S. Crombie, C. Lefrançois, C. Watt, R. Chen, F. Ferber (McGill).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luc Pelletier.

Additional information

Responsible Editor: R. Kelman Wieder.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pelletier, L., Strachan, I.B., Roulet, N.T. et al. Effect of open water pools on ecosystem scale surface-atmosphere carbon dioxide exchange in a boreal peatland. Biogeochemistry 124, 291–304 (2015). https://doi.org/10.1007/s10533-015-0098-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-015-0098-z

Keywords

Navigation