Skip to main content

Advertisement

Log in

Reconstructing terrestrial nutrient cycling using stable nitrogen isotopes in wood

Biogeochemistry Aims and scope Submit manuscript

Abstract

Although recent anthropogenic effects on the global nitrogen (N) cycle have been significant, the consequences of increased anthropogenic N on terrestrial ecosystems are unclear. Studies of the impact of increased reactive N on forest ecosystems—impacts on hydrologic and gaseous loss pathways, retention capacity, and even net primary productivity—have been particularly limited by a lack of long-term baseline biogeochemical data. Stable nitrogen isotope analysis (ratio of 15N to 14N, termed δ15N) of wood chronologies offers the potential to address changes in ecosystem N cycling on millennial timescales and across broad geographic regions. Currently, nearly 50 studies have been published utilizing wood δ15N records; however, there are significant differences in study design and data interpretation. Here, we identify four categories of wood δ15N studies, summarize the common themes and primary findings of each category, identify gaps in the spatial and temporal scope of current wood δ15N chronologies, and synthesize methodological frameworks for future research by presenting eight suggestions for common methodological approaches and enhanced integration across studies. Wood δ15N records have the potential to provide valuable information for interpreting modern biogeochemical cycling. This review serves to advance the utility of this technique for long-term biogeochemical reconstructions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Ammann M, Siegwolf R, Pichlmayer F, Suter M, Saurer M, Brunold C (1999) Estimating the uptake of traffic-derived NO2 from 15N abundance in Norway spruce needles. Oecologia 118:124–131

    Article  Google Scholar 

  • Argerich A, Johnson SL, Sebestyen SD, Rhoades CC, Greathouse E, Knoepp JD, Adams MB, Likens GE Campbell JL, McDowell WH, Scatena FN, Ice GG (2013) Trends in stream nitrogen concentrations for forested reference catchments across the USA. Environ Res Lett 8:014039

  • Bai E, Houlton BZ, Wang YP (2012) Isotopic identification of nitrogen hotspots across natural terrestrial ecosystems. Biogeosciences 9:3287–3304

    Article  Google Scholar 

  • Balster NJ, Marshall JD, Clayton M (2009) Coupling tree-ring δ13C and δ15N to test the effect of fertilization on mature Douglas-fir (Pseudotsuga menziesii var. glauca) stands across the Interior northwest, USA. Tree Physiol 29:1491–1501

    Article  Google Scholar 

  • Bao W, O’Malley DM, Sederoff RR (1992) Wood contains a cell-wall structural protein. Proc Natl Acad Sci USA 89:6604–6608

    Article  Google Scholar 

  • Batterman SA, Hedin LO, van Breugel M, Ransijn J, Craven DJ, Hall JS (2013) Key role of symbiotic dinitrogen fixation in tropical forest secondary succession. Nature 502:224–227

    Article  Google Scholar 

  • Battipaglia G, Marzaioli F, Lubritto C, ALtieri S, Strumia S, Cherubini P, Cotrufo MF (2010) Traffic pollution affects tree-ring width and isotopic composition of Pinus pinea. Sci Total Environ 408:586–593

    Article  Google Scholar 

  • Beghin R, Cherubini P, Battipaglia G, Siegwolf R, Saurer M, Bovio G (2011) Tree-ring growth and stable isotopes (δ13C and δ15N) detect effects of wildfires on tree physiological processes in Pinus sylvestris L. Trees 25:627–636

    Article  Google Scholar 

  • Bernal S, Hedin LO, Likens GE, Gerber S, Buso DC (2012) Complex response of the forest nitrogen cycle to climate change. Proc Natl Acad Sci USA 109:3406–3411

    Article  Google Scholar 

  • Bukata AR, Kyser TK (2005) Response of the nitrogen isotopic composition of tree-rings following tree-clearing and land-use change. Environ Sci Technol 39:7777–7783

    Article  Google Scholar 

  • Bukata AR, Kyser TK (2007) Carbon and nitrogen isotope variations in tree-rings as records of perturbations in regional carbon and nitrogen cycles. Environ Sci Technol 41:1331–1338

  • Chapin FS, Matson PA, Vitousek P, Chapin MC (2011) Principles of terrestrial ecosystem ecology. Springer-Verlag, New York

    Google Scholar 

  • Choi W-J, Lee S-M, Chang SX, Ro H-M (2005) Variation of δ13C and δ15N in Pinus densiflora tree-rings and their relationship to environmental changes in Eastern Korea. Water Air Soil Poll 164:173–187

  • Choi W-J, Chang SX, Bhatti JS (2007) Drainage affects tree growth and C and N dynamics in a minerotrophic peatland. Ecology 88:443–453

    Article  Google Scholar 

  • Craine JM et al (2009) Global patterns of oliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations and nitrogen availability. New Phytol 183:980–992

    Article  Google Scholar 

  • Craine JM et al (2014) Convergence of terrestrial nitrogen loss patterns across global climate gradients. Nat Geosci, in review (Personal communication)

  • Cuoto-Vázquez A, González-Prieto SJ (2010) Effects of climate, tree age, dominance and growth on δ15N in young pinewoods. Trees 24:507–514

    Article  Google Scholar 

  • Doucet A, Savard MM, Bégin C, Smirnoff A (2011) Is wood pre-treatment essential for tree-ring nitrogen concentration and isotope analysis? Rapid Commun Mass Sp 25:469–475

  • Doucet A, Savard MM, Bégin C, Smirnoff A (2012) Tree-ring δ15N values to infer air quality changes at regional scale. Chem Geol 320–321:9–16

    Article  Google Scholar 

  • Drake DC, Sheppard PJ, Naiman RJ (2011) Relationships between salmon abundance and tree ring δ15N: three objective tests. Can J For Res 41:2423–2432

    Article  Google Scholar 

  • Elhani S, Lema BF, Zeller B, Bréchet C, Guehl J-M, Dupouey J-L (2003) Inter-annual mobility of nitrogen between beech rings: a labelling experiment. Ann For Sci 60:503–508

    Article  Google Scholar 

  • Elhani S, Guehl J-M, Nys C, PIcard J-F, Dupouey J-L (2005) Impact of fertilization on tree-ring δ15N and δ13C in beech stands: a retrospective analysis. Tree Physiol 25:1437–1446

    Article  Google Scholar 

  • Elliott EM, Kendall C, Wankel SD, Burns DA, Boyer EW, Harlin K, Bain DJ, Butler TJ (2007) Nitrogen isotopes as indicators of NOx source contributions to atmospheric nitrate deposition across the midwestern and northeastern United States. Environ Sci Technol 41:7661–7667

    Article  Google Scholar 

  • Elliott EM, Kendall C, Boyer E, Burns DA, Lear GG, Golden HE, Harlin K, Bytnerowicz A, Butler TJ, Glatz R (2009) Dual nitrate isotopes in dry deposition: utility for partitioning NOx source contributions to landscape nitrogen deposition. J Geophys Res 114:G04020

    Google Scholar 

  • Emmett BA, Kjønaas OJ, Gundersen P, Koopmans C, Tietema A, Sleep D (1998) Natural abundance of 15N in forests across a nitrogen deposition gradient. Forest Ecology and Management 101:9–18

  • Eronen M, Zetterberg P, Briffa KR, Lindholm M, Meriläinen J, Timonen M (2002) The supra-long Scots pine tree-ring record for Finnish Lapland: part 1, chronology construction and initial inferences. Holocene 12:673–680

    Article  Google Scholar 

  • Felix JD, Elliott EM, Shaw SL (2012) Nitrogen isotopic composition of coal-fired power plant NOx: influence of emission controls and implications for global emissions inventories. Environ Sci Technol 46:3528–3535

    Article  Google Scholar 

  • Ferguson CW (1968) Bristlecone pine: science and esthetics A 7100-year tree-ring chronology aids scientists; old trees draw visitors to California mountains. Science 159:839–846

    Article  Google Scholar 

  • Freyer HD, Kely D, Volz-Thomas A, Kobel K (1993) On the interaction of isotopic exchange processes with photochemical reactions in atmospheric oxides of nitrogen. J Geophys Res 98:14791–14796

  • Galloway J, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–892

    Article  Google Scholar 

  • Gerhart LM, Harris JM, Nippert JB, Sandquist DR, Ward JK (2012) Glacial trees from the La Brea tar pits show physiological constraints of low CO2. New Phytol 194:63–69

    Article  Google Scholar 

  • Guerrieri MR, Saurer M, Siegwolf RTW, Waldner P, Cherubini P (2006) Impatto del traffico veicolare su δ15N, δ13C e δ18O di aghi ed anelli annuali di abete rosso (Picea abies L.) presso un’autostrada in Svizzera. Forest@ 3:437–445

    Article  Google Scholar 

  • Guerrieri MR, Siegwolf RTW, Saurer M, Jäggi M, Cherubini P, Ripullone F, Borghetti M (2009) Impact of different nitrogen emission sources on tree physiology as assessed by a triple stable isotope approach. Atmos Environ 43:410–418

    Article  Google Scholar 

  • Guerrieri MR, Siegwolf R, Saurer M, Ripullone F, Mencuccini M, Borghetti M (2010) Anthropogenic NOx emissions alter the intrinsic water-use efficiency (WUEi) for Quercus cerris stands under Mediterranean climate conditions. Environ Pollut 158:2841–2847

  • Guerrieri MR, Mencuccini M, Sheppard LJ, Saurer M, Perks MP, Levy P, Sutton MA, Borghetti M, Grace J (2011) The legacy of enhanced N and S deposition as revealed by the combined analysis of δ13C, δ18O and δ15N in tree rings. Glob Change Biol 17:1946–1962

    Article  Google Scholar 

  • Härdtle W et al (2013) Long-term trends in tree-ring width and isotope signatures (δ13C, δ15N) of Fagus sylvatics L. on soils with contrasting water supply. Ecosystems 16:1413

    Article  Google Scholar 

  • Hart SC, Classen AT (2003) Potential for assessing long-term dynamics in soil nitrogen availability from variations in δ15N of tree rings. Isot Environ Health Stud 39:15–28

    Article  Google Scholar 

  • Hastings MG, Casciotti KL, Elliott EM (2013) Stable isotopes as tracers of anthropogenic nitrogen sources, deposition, and impacts. Elements 9:339–344

  • Heaton THE (1990) 15N/14N ratios of NOx from vehicle engines and coal-fired power stations. Tellus 42B:304–307

    Google Scholar 

  • Hietz P, Dünisch O, Wanek W (2010) Long-term trends in nitrogen isotope composition and nitrogen concentration in Brazilian rainforest trees suggest changes in nitrogen cycle. Environ Sci Technol 44:1191–1196

    Article  Google Scholar 

  • Hietz P, Turner BL, Wanek W, Richter A, Nock CA, Wright SJ (2011) Long-term change in the nitrogen cycle of tropical forests. Science 334:664–666

  • Hobbie EA, Högberg P (2012) Nitrogen isotopes link mycorrhizal fungi and plants to nitrogen dynamics. New Phytol 196:367–382

    Article  Google Scholar 

  • Högberg P (1997) Tansley review no. 95 15N natural abundance in soil-plant systems. New Phytol 137:179–203

    Article  Google Scholar 

  • Holdaway RN, Hawke DJ, Hyatt OM, Wood GC (2007) Stable isotopic (δ15N, δ13C) analysis of wood in trees growing in past and present colonies of burrow-nesting seabirds in New Zealand. I. δ15N in two species of conifer (Podocarpaceae) from a mainland colony of Westland petrels (Procellaria westlandica), Punakaiki, South Island. J R Soc N Z 37:75–84

    Article  Google Scholar 

  • Holland EA, Braswell BH, Sulzman J, Lamarque J-F (2005) Nitrogen deposition onto the United States and western Europe: synthesis of observations and models. Ecol Appl 15:38–57

    Article  Google Scholar 

  • Houlton BZ, Sigman DM, Hedin LO (2006) Isotopic evidence for large gaseous nitrogen losses from tropical rainforests. Proc Natl Acad Sci USA 103:8745–8750

    Article  Google Scholar 

  • Houlton BZ, Boyer E, Finzi A, Galloway J, Leach A, Liptzin D, Melillo JM, Rosenstock TS, Sobota D, Townsend AR (2013) Intentional versus unintentional nitrogen use in the United States: trends, efficiency and implications. Biogeochemistry 114:11–23

    Article  Google Scholar 

  • Jai G, Chen F (2010) Monthly variations in nitrogen isotopes of ammonium and nitrate in wet deposition at Guangzhou, south China. Atmos Environ 44:2309–2315

    Article  Google Scholar 

  • Jardine TD, Cunjack RA (2005) Analytical error in stable isotope ecology. Oecologia 144:528–533

    Article  Google Scholar 

  • Jung K, Choi W-J, Chang SX, Arshad MA (2013) Soil and tree ring chemistry of Pinus banksiana and Populus tremuloides stands as indicators of changes in atmospheric environments in the oil sands region of Alberta, Canada. Ecol Indic 25:256–265

    Article  Google Scholar 

  • Koopmans CJ, Tietema A, Boxman AW (1996) The fate of 15N enriched throughfall in two coniferous forest stands at different nitrogen deposition levels. Biogeochemistry 34:19–44

    Article  Google Scholar 

  • Kranabetter JM, Saunders S, MacKinnon JA, Klassen H, Spittlehouse DL (2013) As assessment of contemporary and historic nitrogen availability in contrasting coastal Douglas-fir forests through δ15N of tree rings. Ecosystems 16:111–122

    Article  Google Scholar 

  • Kundu S, Kawamura K, Lee M (2010) Seasonal variation of the concentrations of nitrogenous species and their nitrogen isotopic ratios in aerosols at Gosan, Jeju Island: implications for atmospheric processing and source changes of aerosols. J Geophys Res 115:D20305

    Article  Google Scholar 

  • Kwak J-H, Lim S-S, Park H-J, Lee S-I, Lee K-H, Kim H-Y, Chang SX, Lee S-M, Ro H-M, Choi W-J (2009) Relating tree ring chemistry of Pinus densiflora to precipitation acidity in an industrial area of South Korea. Water Air Soil Pollut 199:95–106

    Article  Google Scholar 

  • Kwak J-H, Lim S-S, Chang SX, Lee K-H, Choi W-J (2011) Potential use of δ13C, δ15N, N concentration, and Ca/Al of PInus densiflora tree rings in estimating historical precipitation pH. J Soils Sediments 11:709–721

    Article  Google Scholar 

  • Larry L, Chitoshi M, Mizota C, Yamanaka T, Nobori Y (2010) Temporal changes in tree-ring nitrogen of Pinus thunbergii trees exposed to black-tailed gull (Larus crassirostris) breeding colonies. Appl Geochem 25:1699–1702

    Article  Google Scholar 

  • Larry L, Chitoshi M, Mizota C, Yamanaka T, Nobori Y (2011) Effects of pre-treatment on the nitrogen isotope composition of Japanese black pine (Pinus thunbergii) tree-rings as affected by high N input. Rapid Commun Mass Spectrom 25:3298–3302

    Article  Google Scholar 

  • Leavitt SW, Danzer SR (1993) Method for batch processing small wood samples to holocellulose for stable-carbon isotope analysis. Anal Chem 55:87–89

    Article  Google Scholar 

  • Leavitt SW, Long A (1986) Stable-carbon isotope variability in tree foliage and wood. Ecology 67:1002–1010

    Article  Google Scholar 

  • Leonelli G, Battipaglia G, Siegwolf RTW, Saurer M, Morra di Cella U, Cherubini P, Pelfini M (2012) Climatic isotope signals in tree rings masked by air pollution: a case study conducted along the Mont Blanc Tunnel access road (Western Alps, Italy). Atmos Environ 61:169–179

    Article  Google Scholar 

  • Lovett GM, Weathers KC, Arthur MA, Schultz JC (2004) Nitrogen cycling in a northern hardwood forest: do species matter? Biogeochemistry 67:289–308

    Article  Google Scholar 

  • Mara P, Mihalopoulos N, Gogou A, Daehnke K, Schlarbaum T, Emeis K-C, Krom M (2009) Isotopic composition of nitrate in wet and dry atmospheric deposition on Crete in the eastern Mediterranean Sea. Glob Biogeochem Cycles 23:GB4002

    Article  Google Scholar 

  • McLauchlan KK, Craine JM (2012) Species-specific trajectories of nitrogen isotopes in Indiana hardwood forests, USA. Biogeosciences 9:867–874

    Article  Google Scholar 

  • McLauchlan KK, Craine JM, Oswalkd WW, Leavitt PR, Likens GE (2007) Changes in nitrogen cycling during the past century in a northern hardwood forest. Proc Natl Acad Sci USA 104:7466–7470

    Article  Google Scholar 

  • Mead DJ, Preston CM (1994) Distribution and retranslocation of 15N in lodgepole pine over eight growing seasons. Tree Physiol 14:389–402

    Article  Google Scholar 

  • Merrill W, Cowling EB (1966) Role of nitrogen in wood deterioration: amounts and distribution of nitrogen in tree stems. Can J Bot 44:1555–1579

    Article  Google Scholar 

  • Mizota C, MLL C, Yamanaka T, Nobori Y (2011) Differential response of two Pinus spp. to avian nitrogen input as revealed by nitrogen isotope analysis for tree rings. Isot Environ Health Stud 47:62–70

    Article  Google Scholar 

  • Nadelhoffer KJ, Colman BP, Currie WS, Magill AH, Aber JD (2004) Decadal-scale fates of 15N tracers added to oak and pine stands under ambient and elevated N inputs at the Harvard Forest (USA). Forest Ecol Manag 196:89–107

  • Nadelhoffer KJ, Downs MR, Fry B, Aber JD, Magill AH, Melillo JM (1995) The fate of 15N-labeled nitrate additions to a northern hardwood forest in eastern Maine, USA. Oecologia 103:292–301

    Article  Google Scholar 

  • Nadelhoffer KJ, Downs MR, Fry B (1999a) Sinks for 15N-enriched additions to an oak forest and a red pine plantation. Ecol Appl 9:72–86

    Article  Google Scholar 

  • Nadelhoffer KJ, Emmett BA, Gundersen P, Kjønaas OJ, Koopmans C, Schleppi P, Tietema A, Wright RF (1999b) Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests. Nature 398:145–148

    Article  Google Scholar 

  • National Atmospheric Deposition Program (NRSP-3). 2007. NADP Program Office, Illinois State Water Survey, 2204 Griffith Dr., Champaign, IL 61820

  • Nommik H (1966) The uptake and translocation of fertilizer N15 in young trees of Scots pine and Norway spruce. Stueia For Suec 35:1–18

  • Park M, Randel WJ, Kinnison DE, Garcia RR, Choi W (2004) Seasonal variation o fmethane, water vapor, and nitrogen oxides near the tropopause: satellite observations and model simulations. J Geophys Res 109:D03302

    Google Scholar 

  • Peñuelas J, Estiarte M (1997) Trends in plant carbon concentration and plant demand for N throughout this century. Oecologia 109:69–73

    Article  Google Scholar 

  • Poulson SR, Chamberlain CP, Friedland AJ (1995) Nitrogen isotope variation of tree rings as a potential indicator of environmental change. Chem Geol 125:307–315

    Article  Google Scholar 

  • Reimchen TE, Mathewson D, Hocking MD, Moran J (2002) Isotopic evidence for enrichment of salmon-derived nutrients in vegetation, soil, and insects in riparian zones in coastal British Columbia. In: Stockner J (ed) Nutrients in salmonid ecosystems: sustaining production and diversity, vol 34. American Fisheries Society Symposium, Bethesda, pp 59–69

    Google Scholar 

  • Roden JS, Ehleringer JR (2000) Hydrogen and oxygen isotope ratios of tree ring cellulose for field-grown riparian trees. Oecologia 123:481–489

    Article  Google Scholar 

  • Rolff C, Elmgren R, Voss M (2008) Deposition of nitrogen and phosphorus on the Baltic Sea: seasonal patterns and nitrogen isotope composition. Biogeosciences 5:1657–1667

    Article  Google Scholar 

  • Saurer M, Cherubini P, Ammann M, Cinti BD, Siegwolf R (2004) First detection of nitrogen from NOx in tree rings: a 15N/14N study near a motorway. Atmos Environ 38:2779–2787

    Article  Google Scholar 

  • Savard MM (2010) Tree-ring stable isotopes and historical perspectives on pollution. Environ Pollut 158:2007–2013

    Article  Google Scholar 

  • Savard MM, Begin C, Smirnoff A, Marion J, Rioux-Paquette E (2009) Tree-ring nitrogen isotopes reflect anthropogenic NOx emissions and climatic effects. Environ Sci Technol 43:604–609

    Article  Google Scholar 

  • Schaub D, Weiss AK, Kaiser JW, Petritoli A, Richter A, Buchmann B, Burrows JP (2005) A transboundary transport episode of nitrogen dioxide as observed from GOME an its impact in the Alpine region. Atmos Chem Phys 5:23–37

    Article  Google Scholar 

  • Schleppi P, Bucher-Wallin I, Siegwolf R, Saurer M, Muller N, Bucher JB (1999) Simulation of increased nitrogen deposition to a montane forest ecosystem: partitioning of the added 15N. Water Air Soil Pollut 116:129–134

    Article  Google Scholar 

  • Schulze B, Wirth C, Linke P, Brand WA, Kuhlmann I, Horna V, Schulze E-D (2004) Laser ablation-combustion-GC-IRMS—a new method for online analysis of intra-annual variation of δ13C in tree rings. Tree Physiol 24:1193–1201

    Article  Google Scholar 

  • Sheppard PR, Thompson TL (2000) Effect of extraction on radial variation of nitrogen concentration in tree rings. J Environ Qual 29:2037–2042

    Article  Google Scholar 

  • Showalter AM (1993) Structure and function of plant cell wall proteins. Plant Cell 5:9–23

    Article  Google Scholar 

  • Stock WD, Bourke L, Foend RH (2012) Dendroecological indicators of historical responses of pines to water and nutrient availability on a superficial aquifer in south-western Australia. For Ecol Manage 264:108–114

    Article  Google Scholar 

  • Sun F, Kuang Y, Wen D, Xu Z, Li J, Zuo W, Hou E (2010) Long-term tree growth rate, water use efficiency, and tree ring nitrogen isotope composition of Pinus massoniana L. in response to global climate change and local nitrogen deposition in Southern China. J Soils Sediments 10:1453–1465

    Article  Google Scholar 

  • Templer PH, Dawson TE (2004) Nitrogen uptake by four tree species of the Catskill Mountains, New York: implications for forest N dynamics. Plant Soil 262:251–261

    Article  Google Scholar 

  • Templer PH et al (2012) Sinks for nitrogen inputs in terrestrial ecosystem: a meta-analysis of 15N tracer field studies. Ecology 93:1816–1829

    Article  Google Scholar 

  • Vines TH, Albert AYK, Andrew RL, Débarre F, Bock DG, Franklin MT, Gilbert KJ, Moore J-S, Renaut S, Rennison DJ (2013) The availability of research data declines rapidly with article age. Curr Biol 24:94–97

  • Vitousek PM, Matson PA, van Cleve K (1989) Nitrogen availability and nitrification during succession: primary, secondary, and old-field seres. Plant Soil 115:229–239

    Article  Google Scholar 

  • Weber P, Bol R, Dixon L, Bardgett RD (2008) Large old trees influence patterns of δ13C and δ15N in forests. Rapid Commun Mass Spectrom 22:1627–1630

    Article  Google Scholar 

  • Wolfe AP, Hobbs WO, Birks HH, Briner JP, Holmgren SU, Ingólfsson Ó, Kaushal SS, Miller GH, Pagani M, Saros JE, Vinebrooke RD (2013) Stratigraphic expressions of the Holocene-Anthropocene transition revealed in sediments from remote lakes. Earth-Sci Rev 116:17–34

  • Wolkovich EM, Regetz J, O’Connor MI (2012) Advances in global change research require open science by individual researchers. Glob Change Biol 18:2102–2110

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded in part by the National Science Foundation under grant NSF-DEB 1145815 to K.M. We thank members of the Novus Network for helpful discussions, and Joe Craine and Julie Commerford for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laci M. Gerhart.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 102 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerhart, L.M., McLauchlan, K.K. Reconstructing terrestrial nutrient cycling using stable nitrogen isotopes in wood. Biogeochemistry 120, 1–21 (2014). https://doi.org/10.1007/s10533-014-9988-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-014-9988-8

Keywords

Navigation