Skip to main content
Log in

Minor stable carbon isotope fractionation between respired carbon dioxide and bulk soil organic matter during laboratory incubation of topsoil

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

A common assumption in paleoenvironmental reconstructions using soils is that the carbon isotope composition of soil-respired CO2 is equivalent to the carbon isotope composition of bulk soil organic matter (SOM). However, the occurrence of a non-zero per mil carbon isotope enrichment factor between CO2 and SOM (\(\varepsilon_{{{\text{CO}}_{ 2} - {\text{SOM}}}}\)) during soil respiration is the most widely accepted explanation for the down-profile increase in SOM δ13C values commonly observed in well-drained soils. In order to shed light on this apparent discrepancy, we incubated soil samples collected from the top 2 cm of soils with pure C3 vegetation and compared the δ13C values of soil-respired CO2 to the δ13C values of bulk SOM. Our results show near-zero \(\varepsilon_{{{\text{CO}}_{ 2} - {\text{SOM}}}}\) values (−0.3 to 0.4 ‰), supporting the use of paleosol organic matter as a proxy for paleo soil-respired CO2. Significantly more negative \(\varepsilon_{{{\text{CO}}_{ 2} - {\text{SOM}}}}\) values are required to explain the typical δ13C profiles of SOM in well-drained soils. Therefore our results also suggest that typical SOM δ13C profiles result from either (1) a process other than carbon isotope fractionation between CO2 and SOM during soil respiration or (2) \(\varepsilon_{{{\text{CO}}_{ 2} - {\text{SOM}}}}\) values that become increasingly negative as SOM matures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abraham WR, Hesse C, Pelz O (1998) Ratios of carbon isotopes in microbial lipids as an indicator of substrate usage. Appl Environ Microbiol 64:4202–4209

    Google Scholar 

  • Acton P, Fox J, Campbell E, Rowe H, Wilkinson M (2013) Carbon isotopes for estimating soil decomposition and physical mixing in well-drained forest soils. J Geophys Res 118:1532–1545

    Article  Google Scholar 

  • Ågren GI, Bosatta E, Balesdent J (1996) Isotope discrimination during decomposition of organic matter: a theoretical analysis. Soil Sci Soc Am J 60:1121–1126

    Article  Google Scholar 

  • Andrews JA, Matamala R, Westover KM, Schlesinger WH (2000) Temperature effects on the diversity of soil heterotrophs and the δ13C of soil-respired CO2. Soil Biol Biochem 32:699–706

    Article  Google Scholar 

  • Balesdent J, Girardin C, Mariotti A (1993) Site-related d13C of tree leaves and soil organic matter in a temperate forest. Ecology 74:1713–1721

    Article  Google Scholar 

  • Balesdent J, Chenu C, Balabane M (2000) Relationship of soil organic matter dynamics to physical protection and tillage. Soil Tillage Res 53(3):215–230

    Article  Google Scholar 

  • Ball DF (1964) Loss-on-ignition as an estimate of organic matter and organic carbon in non-calcareous soils. J Soil Sci 15:84–92

    Article  Google Scholar 

  • Boström B, Comstedt D, Ekblad A (2007) Isotope fractionation and 13C enrichment in soil profiles during the decomposition of soil organic matter. Oecologia 153:89–98

    Article  Google Scholar 

  • Bowen, G.J., and Beerling, D.J. (2004) An integrated model for soil organic carbon and CO2: Implications for paleosol carbonate pCO2 paleobarometry. Global Biogeochemical Cycles 18: GB1026

  • Bowling DR, Pataki DE, Randerson JT (2008) Carbon isotopes in terrestrial ecosystem pools and CO2 fluxes. New Phytol 178:24–40

    Article  Google Scholar 

  • Breecker DO (2013) Quantifying and understanding the uncertainty of atmospheric CO2 concentrations determined from calcic paleosols. Geochem Geophys Geosyst 14:3210–3220

    Article  Google Scholar 

  • Breecker D, Sharp ZD (2008) A field and laboratory method for monitoring the concentration and stable isotope composition of soil CO2. Rapid Commun Mass Spectrom 22:449–454

    Article  Google Scholar 

  • Breecker D, Sharp ZD, McFadden L (2009) Seasonal bias in the formation and stable isotope composition of pedogenic carbonate in modern soils from central New Mexico, USA. Geol Soc Am Bull 121:630–640

    Article  Google Scholar 

  • Breecker DO, McFadden LD, Sharp ZD, Martinez M, Litvak ME (2012) Deep autotrophic soil respiration in shrubland and woodland ecosystems in central New Mexico. Ecosystems 15:83–96

    Article  Google Scholar 

  • Brüggemann N, Gessler A, Kayler Z, Keel SG, Badeck F, Barthel M, Boeckx P, Buchmann N, Brugnoli E, Esperschütz J, Gavrichkova O, Ghashghaie J, Gomez-Casanovas N, Keitel C, Knohl A, Kuptz D, Palacio S, Salmon Y, Uchida Y, Bahn M (2011) Carbon allocation and carbon isotope fluxes in the plant-soil-atmosphere continuum: a review. Biogeosciences 8:3457–3489

    Article  Google Scholar 

  • Brunn M, Spielvogel S, Sauer T, Oelmann Y (2014) Temperature and precipitaion effects on d13C depth profiles in SOM under temperate beech forests. Geoderma 235–236:146–153

    Article  Google Scholar 

  • Cerling TE (1991) Carbon dioxide in the atmosphere: evidence from Cenozoic and Mesozoic paleosols. Am J Sci 291:377–400

    Article  Google Scholar 

  • Cerling TE (1992) Use of carbon isotopes in paleosols as an indicator of the p(CO2) of the paleoatmosphere. Global Biogeochem Cycles 6:307–314

    Article  Google Scholar 

  • Cerling TE (1999) Stable carbon isotopes in palaeosol carbonates. In: Thiry M, Coincon RS (eds) Palaeoweathering, palaeosurfaces and related continental deposits, vol. 27. Special Publication of the International Association of Sedimentologists, p 43–60

  • Cotton JM, Sheldon ND (2012) New constraints on using paleosols to reconstruct atmospheric pCO2. Geol Soc Am Bull 124:1411–1423

    Article  Google Scholar 

  • Crow SE, Sulzman EW, Rugh WD, Bowden RD, Lajtha K (2006) Isotopic analysis of respired CO2 during decomposition of separated soil organic matter pools. Soil Biol Biochem 38:3279–3291

    Article  Google Scholar 

  • Deines P, Langmuir D, Harmon RS (1974) Stable carbon isotope ratios and the existence of a gas phase in the evolution of carbonate ground waters. Geochim Cosmochim Acta 38:1147–1164

    Article  Google Scholar 

  • Ehleringer JR, Buchmann N, Flanagan LB (2000) Carbon isotope ratios in belowground carbon cycle processes. Ecol Appl 10:412–422

    Article  Google Scholar 

  • Ekblad A, Högberg P (2000) Analysis of δ13C of CO2 distinguishes between microbial respiration of added C4-sucrose and other soil respiration in a C3-ecosystem. Plant Soil 219:197–209

    Article  Google Scholar 

  • Ekblad A, Nyberg G, Högberg P (2002) 13C-discrimination during microbial respiration of added C3-, C4 and 13C-labelled sugars to a C3-forest soil. Oecologia 131:245–249

    Article  Google Scholar 

  • Elzein A, Balesdent J (1995) Mechanistic simulaion of vertical distribution of carbon concentrations and residence times in soils. Soil Sci Soc Am J 59:1328–1335

    Article  Google Scholar 

  • Feng X (2002) A theoretical analysis of carbon isotope evolution of decomposing plant litters and soil organic matter. Global Biogeochem Cycles 16:1119

    Article  Google Scholar 

  • Feng X, Peterson JC, Quideau SA, Virginia RA, Graham RC, Sonder LJ, Chadwick OA (1999) Distribution, accumulation and fluxes of soil carbon in four monoculture lysimeters at San Dimas Experimental Forest, California. Geochim Cosmochim Acta 63:1319–1333

    Article  Google Scholar 

  • Formánek P, Ambus P (2004) Assessing the use of d13C natural abundance in the separation of root and microbial respiration in a Danish beench (Fagus sylvatica L.) forest. Rapid Commun Mass Spectrom 18:897–902

    Article  Google Scholar 

  • Frostegård A, Bååth E (1996) The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol Fertil Soils 22:59–65

    Article  Google Scholar 

  • Garten CT Jr, Cooper LW, Post WMI, Hanson PJ (2000) Climate controls on forest soil C isotope ratios in the southern Appalachain Mountains. Ecology 81:1108–1119

    Article  Google Scholar 

  • Gaudinski JB, Trumbore SE, Davidson EA, Zheng S (2000) Soil carbon cycling in a temperature forest: radiocarbon-based estimates of residence times, sequestration rates and partitioning of fluxes. Biogeochemistry 51:33–69

    Article  Google Scholar 

  • Hanson PJ, Edwards NT, Garten CT, Andrews JA (2000) Separating root and soil microbial contribution to soil respiration: a review of methods and observations. Biogeochemistry 48:115–146

    Article  Google Scholar 

  • Hobbie EA, Macko SA, Shugart HH (1999) Insights into nitrogen and carbon dynamics of ectomycorrhizal and saprotrophic fungi from isotopic evidence. Oecologia 118:353–360

    Article  Google Scholar 

  • Högberg P, Plamboeck AH, Taylor AFS, Fransson PMA (1999) Natural 13C abundance reveals trophic status of fungi and host-origin of carbon in mycorrhizal fungi in mixed forests. Proceedings of the National Academy of Science of the United States of America 96:8534–8539

    Article  Google Scholar 

  • Kaiser K, Guggenberger G, Zech W (2001) Isotopic fractionation of dissolved organic carbon in shallow forest soils as affectd by sorption. Eur J Soil Sci 52:585–597

    Article  Google Scholar 

  • Keeling CD (1979) The Suess effect: 13Carbon -14Carbon interrelations. Environ Int 2:229–300

    Article  Google Scholar 

  • Larson TE, Breecker DO (2014) Adsorption isotope effects for carbon dioxide from illite- and quartz-packed column experiments. Chemical Geology 370:58–68

    Article  Google Scholar 

  • Lerch TZ, Nunan N, Dignac MF, Chenu C, Mariotti A (2011) Variations in microbial isotopic fractionation during soil organic matter decomposition. Biogeochemistry 106:5–21

    Article  Google Scholar 

  • Lundberg P, Ekblad A, Nilsson M (2001) 13C NMR spectroscopy studies of forest soil microbial activity: glucose uptake and fatty acid biosynthesis. Soil Biol Biochem 33:621–632

    Article  Google Scholar 

  • Mueller CW, Gutsch M, Kothieringer K, Leifield J, Rethemeyer J, Brueggemann N, Kögel-Knabner I (2014) Bioavailability of isotopic composition of CO2 released from incubated soil organic matter fractions. Soil Biol Biochem 69:168–178

    Article  Google Scholar 

  • Natelhoffer KJ, Fry B (1988) Controls on natural nitrogen-15 and carbon-13 anundances in forest soil organic matter. Soil Sci Soc Am J 52:1633–1640

    Article  Google Scholar 

  • Poage MA, Feng X (2004) A theoretical analysis of steady state d13C profiles of soil organic matter. Global Biogeochem Cycles 18:GB2016

    Article  Google Scholar 

  • Santrucková H, Bird MI, Lloyd J (2000) Microbial processes and carbon-isotope fractionation in tropical and temperate grassland soils. Funct Ecol 14:108–114

    Article  Google Scholar 

  • Stevenson BA, Kelly EF, McDonald EV, Busacca AJ (2005) The stable carbon isotope composition of soil organic carbon and pedogenic carbonates along a bioclimatic gradient in the Palouse region, Washington State, USA. Geoderma 124:37–47

    Article  Google Scholar 

  • Torn MS, Lapenis AG, Timofeev A, Fischer ML, Babikov BV, Harden JW (2002) Organic carbon and carbon isotope in modern and 100-year-old-soil archives of the Russian steppe. Glob Change Biol 8:941–953

    Article  Google Scholar 

  • Trumbore SE (2000) Age of soil organic matter and soil respiration: radiocarbon contraints on belowground C dynamics. Ecol Appl 10:399–411

    Article  Google Scholar 

  • Tu K, Dawson T (2005) Partitioning ecosystem respiration using stable carbon isotope analyses of CO2. In: Flanagan LB, Ehleringer JR, Pataki DE (eds) Stables isotopes and biosphere-atmosphere interaction: processes and biology controls. Academic Press, London, pp 125–153

    Chapter  Google Scholar 

  • Van Vuuren MMI, Robinson D, Scrimgeour CM, Raven A, Fitter AH (2000) Decomposition of 13C-labelled wheat root systems following growth at different CO2 concentrations. Soil Biol Biochem 32:403–413

    Article  Google Scholar 

  • Werth M, Kuzyakov Y (2010) 13C fractionation at the root-microogranisms-soil interface: a review and outlook for partioning studies. Soil Biol Biochem 42:1372–1384

    Article  Google Scholar 

  • Werth M, Subboina I, Kuzyakov Y (2006) Three-source partitioning of CO2 efflux from soil planted with maize by 13C natural abundance fails due to inactive microbial biomass. Soil Biol Biochem 38:2772–2781

    Article  Google Scholar 

  • Wynn JG (2007) Carbon isotope fractionation during decomposition of organic matter in soils and paleosols: implications for paleoecological interpretations of paleosols. Palaeogeogr Palaeoclimatol Palaeoecol 251:437–448

    Article  Google Scholar 

  • Wynn JG, Bird IM, Wong VNL (2005) Rayleigh distillation and the depth profile of 12C/13C ratios of soil organic carbon from soils of disparate texture in Iron Range National Park, Far North Queensland, Australia. Geochim Cosmochim Acta 69:1961–1973

    Article  Google Scholar 

  • Wynn JG, Harden JW, Fries TL (2006) Stable carbon isotope depth profiles and soil organic carbon dynamics in the lower Mississippi Basin. Geoderma 131:89–109

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Katharine Ordway Natural History Study Area for access and D. Fortner for logistical help. Comments from three anonymous reviewers helped substantially improve the manuscript. NSF-REU 0852029 supported this research. Data reported in this paper are available from the International Soil Carbon Network (http://www.fluxdata.org/nscn/SitePages/ISCN.aspx).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. O. Breecker.

Additional information

Responsible Editor: James Sickman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 131 kb)

Supplementary material 2 (DOCX 94 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Breecker, D.O., Bergel, S., Nadel, M. et al. Minor stable carbon isotope fractionation between respired carbon dioxide and bulk soil organic matter during laboratory incubation of topsoil. Biogeochemistry 123, 83–98 (2015). https://doi.org/10.1007/s10533-014-0054-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-014-0054-3

Keywords

Navigation