Skip to main content
Log in

Stoichiometric analysis of nutrient availability (N, P, K) within soils of polygonal tundra

Biogeochemistry Aims and scope Submit manuscript

Abstract

Plant growth in arctic tundra is known to be commonly limited by nitrogen. However, biogeochemical interactions between soil, vegetation and microbial biomass in arctic ecosystems are still insufficiently understood. In this study, we investigated different compartments of the soil-vegetation system of polygonal lowland tundra: bulk soil, inorganic nutrients, microbial biomass and vegetation biomass were analyzed for their contents of carbon, nitrogen, phosphorus and potassium. Samples were taken in August 2011 in the Indigirka lowlands (NE Siberia, Russia) in a detailed grid (4 m × 5 m) in one single ice-wedge polygon. We used a stoichiometric approach, based on the N/P ratios in the vegetation biomass and the investigated soil fractions, to analyze limitation relations in the soil-vegetation system. Plant growth in the investigated polygonal tundra appears to be co-limited by nitrogen and phosphorus or in some cases only limited by nitrogen whereas potassium is not limiting plant growth. However, as the N/P ratios of the microbial biomass in the uppermost soil horizons were more than twice as high as previously reported for arctic ecosystems, nitrogen mineralization and fixation may be limited at present by phosphorus. We found that only 5 % of the total nitrogen is already cycling in the biologically active fractions. On the other hand, up to 40 % of the total phosphorus was found in the biologically active fractions. Thus, there is less potential for increased phosphorus mineralization than for increased nitrogen mineralization in response to climate warming, and strict phosphorus limitation might be possible in the long-term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aber JD, Melillo JM (2001) Terrestrial ecosystems, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Aerts R (2006) The freezer defrosting: global warming and litter decomposition rates in cold biomes. J Ecol 94:713–724

    Article  Google Scholar 

  • Ågren GI (2004) The C:N:P stoichiometry of autotrophs—theory and observations. Ecol Lett 7:185–191

    Article  Google Scholar 

  • Ågren GI, Wetterstedt JÅM, Billberger MFK (2012) Nutrient limitation on terrestrial plant growth—modeling the interaction between nitrogen and phosphorus. New phytol 194:953–960

    Article  Google Scholar 

  • Anderson T, Domsch KH (1989) Ratios of microbial biomass carbon to total organic carbon in arable soils. Soil Biol Biochem 21:471–479

    Article  Google Scholar 

  • Avis CA, Weaver AJ, Meissner KJ (2011) Reduction in areal extent of high-latitude wetlands in response to permafrost thaw. Nat Geosci 4:444–448

    Article  Google Scholar 

  • Bending GD, Read DJ (1996) Nitrogen mobilization from protein-polyphenol complex by ericoid and ectomycorrhizal fungi. Soil Biol Biochem 28:1603–1612

    Article  Google Scholar 

  • Brookes PC, Landman A, Pruden G, Jenkinson DS (1985) Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem 17:837–842

    Article  Google Scholar 

  • Brown J, OJ. Ferrians JA, Heginbottom, ES Melnikov (1998) Circum-arctic map of permafrost and ground ice conditions. Boulder, CO: National Snow and Ice Data Center, Digital media, 1998, revised February 2001

  • Chapin DM (1996) Nitrogen mineralization, nitrification and denitrification in a high arctic lowland ecosystem, Devon Island, N.W.T, Canada. Arctic Alp Res 28:85–92

    Article  Google Scholar 

  • Chapin FS, Barsdate RJ, Barèl D (1978) Phosphorus cycling in Alaskan Coastal Tundra: a hypothesis for the regulation of nutrient cycling. Oikos 31:189–199

    Article  Google Scholar 

  • Chapin FS, Shaver GR, Giblin AE, Nadelhoffer KJ, Laundre JA (1995) Responses of Arctic tundra to experimental and observed changes in climate. Ecology 76:694–711

    Article  Google Scholar 

  • Chernov YI, Matveyeva NV (1997) Arctic Ecosystems in Russia. In: Wielgolaski FE (ed) Ecosystems of the World, part 3: polar and alpine tundra. Elsevier, Amsterdam, pp 361–507

    Google Scholar 

  • Cleveland CC, Liptzin D (2007) C:N:P stoichiometry in soil: is there a “redfield ratio” for the microbial biomass? Biogeochemistry 85:235–252

    Article  Google Scholar 

  • Czerepanov SK (1995) Vascular plants of Russia and adjacent states (the former USSR). Cambridge University Press, Cambridge

    Google Scholar 

  • De Cáceres M, Legendre P (2009) Associations between species and groups of sites: indices and statistical inference. Ecology 90:3566–3574

    Article  Google Scholar 

  • De Klerk P, Donner N, Karpov NS, Minke M, Joosten H (2011) Short-term dynamics of a low-centred ice-wedge polygon near Chokurdakh (NE Yakutia, NE Siberia) and climate change during the last ca 1250 years. Quatern Sci Rev 30:3013–3031

    Article  Google Scholar 

  • De Klerk P, Teltewskoi A, Theuerkauf M, Joosten H (2014) Vegetation patterns, pollen deposition and distribution of non-pollen palynomorphs in an ice-wedge polygon near Kytalyk (NE Siberia), with some remarks on Arctic pollen morphology. Polar Biology 37:1393-1412

  • Elser JJ, Dobberfuhl DR, Mackay NA, Schampel JH (1996) Organism size, life history and N:P stoichiometry. Bioscience 46:674–684

    Article  Google Scholar 

  • Elton-Bott RR (1977) A modified spectrophotometric method for nitrate plants, soils and water by nitration of 3,4-dimethylphenol. Anal Chim Acta 90:215–221

    Article  Google Scholar 

  • Eriksson T, Öquist MG, Nilsson MB (2010) Production and oxidation of methane in a boreal mire after a decade of increased temperature and nitrogen and sulfur deposition. Glob Change Biol 16:2130–2144

    Article  Google Scholar 

  • Fiedler S, Wagner D, Kutzbach L, Pfeiffer E-M (2004) Element redistribution along hydraulic and redox gradients of low-centered polygons, Lena Delta, Northern Siberia. Soil Sci Soc Am J 68:1002–1011

    Article  Google Scholar 

  • Fierer N, Schimel JP, Holden PA (2003) Variations in microbial community composition through two soil depth profiles. Soil Biol Biochem 35:167–176

    Article  Google Scholar 

  • French HM (2007) The periglacial environment. Wiley, West Sussex

    Book  Google Scholar 

  • Frey W, Frahm JP, Fischer E, Lobin W (1995) Die Moos- und Farnpflanzen Europas. Fischer, Stuttgart

    Google Scholar 

  • Giesler R, Esberg C, Lagerström A, Graae BJ (2012) Phosphorus availability and microbial respiration across different tundra vegetation types. Biogeochemistry 108:429–445

    Article  Google Scholar 

  • Güsewell S (2004) N:P ratios in terrestrial plants: variation and functional significance. New Phytol 164:243–266

    Article  Google Scholar 

  • Güsewell S, Freeman C (2005) Nutrient limitation and enzyme activities during litter decomposition of nine wetland species in relation to litter N:P ratios. Funct Ecol 19:582–593

    Article  Google Scholar 

  • Harpole WS, Ngai JT, Cleland EE, Seabloom EW, Borer ET, Bracken MES, Elser JJ, Gruner DS, Hillebrand H, Shurin JB, Smith JE (2011) Nutrient co-limitation of primary producer communities. Ecol Lett 14:852–862

    Article  Google Scholar 

  • Hartman WH, Richardson CJ (2013) Differential nutrient limitation of soil microbial biomass and metabolic quotients (qCO2): is there a biological stoichiometry of soil microbes? PLoS One 8:e57127

    Article  Google Scholar 

  • Hedley MJ, Stewart JWB (1982) Method to measure microbial phosphate in soil. Soil Biol Biochem 14:377–385

    Article  Google Scholar 

  • Hedley MJ, Stewart JWB, Chauhan BS (1982) Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Sci Soc Am J 46:970–976

    Article  Google Scholar 

  • Helbig M, Boike J, Langer M, Schreiber P, Runkle BRK, Kutzbach L (2013) Spatial and seasonal variability of polygonal tundra water balance: Lena River Delta, northern Siberia (Russia). Hydrogeol J 21:133–147

    Article  Google Scholar 

  • Hill DE, Tedrow JCF (1961) Weathering and soil formation in the Arctic environment. Am J Sci 259:84–101

    Article  Google Scholar 

  • Hobara S, Mccalley C, Koba K, Giblin AE, Weiss MS, Gettel GM, Shaver GR (2006) Nitrogen fixation in surface soils and vegetation in an Arctic tundra watershed: a key source of atmospheric nitrogen. Arct Antarct Alp Res 38:363–372

    Article  Google Scholar 

  • Ivanoff DB, Reddy KR, Robinson S (1998) Chemical fractionation of organic phosphorus in selected histosols. Soil Sci 163:36–45

    Article  Google Scholar 

  • Jones D, Willett V (2006) Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biol Biochem 38:991–999

    Article  Google Scholar 

  • Koerselman W, Meuleman FM (1996) The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. J Appl Ecol 33:1441–1450

    Article  Google Scholar 

  • Kutzbach L, Wagner D, Pfeiffer E-M (2004) Effect of microrelief and vegetation on methane emission from wet polygonal tundra, Lena Delta, northern Siberia. Biogeochemistry 69:341–362

    Article  Google Scholar 

  • Londo G (1976) The decimal scale for releves of permanent quadrats. Vegetatio 33:61–64

    Article  Google Scholar 

  • MacDonald NW, Zak DR, Pregitzer KS (1995) Temperature effects on kinetics of microbial respiration and net nitrogen and sulfur mineralization. Soil Sci Soc Am J 59:233–240

    Article  Google Scholar 

  • Mack MC, Schuur EAG, Bret-Harte MS, Shaver GR, Chapin FS (2004) Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization. Nature 431:440–443

    Article  Google Scholar 

  • MacKay JR (2000) Thermally induced movements in ice-wedge polygons, western arctic coast: a long-term study. Géog Phys Quatern 54:41

    Google Scholar 

  • Makino W, Cotner JB, Sterner RW, Elser JJ (2003) Are bacteria more like plants or animals? Growth rate and resource dependence of bacterial C:N:P stoichiometry. Funct Ecol 17:121–130

    Article  Google Scholar 

  • McGroddy ME, Daufresne T, Hedin LO (2004) Scaling of C:N:P stoichiometry in forests worldwide: implications of terrestrial redfield-type ratios. Ecology 85:2390–2401

    Article  Google Scholar 

  • Michaelis M (2011) Die Sphagnum-Arten der Welt. Bibl Bot 160:1–408

    Google Scholar 

  • Minke M, Donner N, Karpov NS, De Klerk P, Joosten H (2007) Distribution, diversity, development and dynamics of polygon mires: examples from northeast Yakutia (Siberia). Peatl Int 1:36–40

    Google Scholar 

  • Minke M, Donner N, Karpov N, De Klerk P, Joosten H (2009) Patterns in Vegetation Composition, Surface Height and Thaw Depth in Polygon Mires in the Yakutian Arctic (NE Siberia): A Microtopographical Characterisation of the Active Layer. Permafrost and Periglacial Processes 20:357–368.

  • Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36

    Article  Google Scholar 

  • Nadelhoffer KJ, Giblin AE, Shaver GR, Linkins AE (1992) Microbial processes and plant nutrient availability in Arctic soils. In: Chapin FS, Jefferies RL, Reyonolds JF, Shaver GR, Svoboda J (eds) Arctic ecosystems in a changing climate. Academic Press, San Diego, pp 281–300

    Chapter  Google Scholar 

  • Natali SM, Schuur EAG, Rubin RL (2012) Increased plant productivity in Alaskan tundra as a result of experimental warming of soil and permafrost. J Ecol 100:488–498

    Article  Google Scholar 

  • O’Donnell JA, Jorgenson MT, Harden JW, McGuire AD, Kanevskiy MZ, Wickland KP (2011) The effects of permafrost thaw on soil hydrologic, thermal, and carbon dynamics in an Alaskan peatland. Ecosystems 15:213–229

    Article  Google Scholar 

  • Olde Venterink H, Wassen JM, Verkroost AWM, De Ruiter PC (2003) Species richness-productivity patterns differ between N-, P-, and K-limited wetlands. Ecology 84:2191–2199

    Article  Google Scholar 

  • Oorts K, Vanlauwe B, Merckx R (2003) Cation exchange capacities of soil organic matter fractions in a Ferric Lixisol with different organic matter inputs. Agric Ecosyst Environ 100:161–171

    Article  Google Scholar 

  • Parmentier FJW, van Huissteden J, van der Molen MK, Schaepman-Strub G, Karsanaev SA, Maximov TC, Dolman AJ (2011) Spatial and temporal dynamics in eddy covariance observations of methane fluxes at a tundra site in northeastern Siberia. J Geophys Res 116:G03016

    Google Scholar 

  • Peñuelas J, Sardans J, Rivas-ubach A, Janssens IA (2012) The human-induced imbalance between C, N and P in Earth’s life system. Glob Change Biol 18:3–6

    Article  Google Scholar 

  • Polunin N (1959) Circumpolar Arctic flora. Clarendon Press, Oxford

    Google Scholar 

  • R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Redfield AC (1958) The biological control of chemical factors in the environment. Am Sci 46:205–221

    Google Scholar 

  • Reich PB, Hobbie SE, Lee T, Ellsworth DS, West JB, Tilman D, Knops JMH, Naeem S, Trost J (2006) Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature 440:922–925

    Article  Google Scholar 

  • Rothmaler W (2002) Exkursionsflora von Deutschlands Gefäßpflanzen: Grundband. Spektrum Akademischer Verlag, Heidelberg

    Google Scholar 

  • Russsia´s Weather Server 2013. http://meteo.infospace.ru/wcarch/html/index.sht

  • Rustad LE, Campbell JL, Marion GM, Norby RJ, Mitchell MJ, Hartley AE, Cornelissen JHC, Gurevitch J (2001) A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126:543–562

    Article  Google Scholar 

  • Saito MA, Goepfert TJ, Ritt JT (2008) Some thoughts on the concept of colimitation: three definitions and the importance of bioavailability. Limnol Oceanogr 53:276–290

    Article  Google Scholar 

  • Sardans J, Rivas-Ubach A, Peñuelas J (2012) The elemental stoichiometry of aquatic and terrestrial ecosystems and its relationships with organismic lifestyle and ecosystem structure and function: a review and perspectives. Biogeochemistry 111:1–39

    Article  Google Scholar 

  • Scheffer F, Schachtschabel P (2002) Lehrbuch der Bodenkunde, 15th edn. Spektrum Akademischer Verlag, Heidelberg

    Google Scholar 

  • Schimel JP, Bennett J (2004) Nitrogen mineralization: challenges of a changing paradigm. Ecology 85:591–602

    Article  Google Scholar 

  • Schimel JP, Weintraub MN (2003) The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model. Soil Biol Biochem 35:549–563

    Article  Google Scholar 

  • Schmidtlein S, Tichý L, Feilhauer H, Faude U (2010) A brute-force approach to vegetation classification. J Veg Sci 21:1162–1171

    Article  Google Scholar 

  • Selmer-olsen AR (1971) Determination of ammonium in soil extracts by an automated indophenol method. Anaylst 96:565–568

    Article  Google Scholar 

  • Sjögersten S, Cheesman AW, Lopez O, Turner BL (2010) Biogeochemical processes along a nutrient gradient in a tropical ombrotrophic peatland. Biogeochemistry 104:147–163

    Article  Google Scholar 

  • Soil Survey Staff (2010) Keys to soil taxonomy, 11th edn. USDA-Natural Resources Conservation Service, Washington, D.C

    Google Scholar 

  • Sparling GP, Feltham CW, Reynolds J, West AW, Singleton P (1990) Estimation of soil microbial c by a fumigation-extraction method: use on soils of high organic matter content, and a reassessment of the kec-factor. Soil Biol Biochem 22:301–307

    Article  Google Scholar 

  • Sterner RW, Elser JJ (2002) Ecological stoichiometry, 1st edn. Princeton University Press, Princeton

    Google Scholar 

  • Teltewskoi A, Seyfert J, Joosten H (2012) Records from the model polygon Lhc11 for modern and palaeoecological studies. In: Schirrmeister L, Pestryakova LA, Wetterich S, Tumskoy VE (eds) Reports on polar and marine research—joint Russian–German polygon project east Siberia 2011–2014: The expedition Kytalyk 2011. Alfred-Wegener-Institute, Bremerhaven, pp 51–60

    Google Scholar 

  • Titus BD, Malcolm DC (1992) Nutrient leaching from the litter layer after clearfelling of sitka spruce stands on peaty gley soils. Forestry 65:389–416

    Article  Google Scholar 

  • Tolmachev AI (1974) Opredelitel´vysshikh rasteniy Yakutii. Nauka, Yakutsk

    Google Scholar 

  • Tumskoy VE, Schirrmeister L (2012) Study area, geological and geographical characteristics. In: Schirrmeister L, Pestryakova LA, Wetterich S, Tumskoy VE (eds) Reports on polar and marine research—joint Russian–German polygon project east Siberia 2011–2014: The expedition Kytalyk 2011. Alfred-Wegener-Institute, Bremerhaven, pp 5–10

    Google Scholar 

  • Tveit A, Schwacke R, Svenning MM, Urich T (2013) Organic carbon transformations in high-Arctic peat soils: key functions and microorganisms. ISME J 7:299–311

    Article  Google Scholar 

  • Van der Molen MK, van Huissteden J, Parmentier FJW, Petrescu AMR, Dolman AJ, Maximov TC, Kononov AV, Karsanaev SV, Suzdalov DA (2007) The growing season greenhouse gas balance of a continental tundra site in the Indigirka lowlands, NE Siberia. Biogeosciences 4:985–1003

    Article  Google Scholar 

  • Van Huissteden J, Maximov TC, Dolman AJ (2005) High methane flux from an arctic floodplain (Indigirka lowlands, eastern Siberia). J Geophys Res 110:1–8

    Google Scholar 

  • VDLUFA (1991) Methodenbuch. Verband Deutscher Landwirtschaftlicher Untersuchungs- und Forschungsanstalten, Darmstadt

    Google Scholar 

  • Vitousek PM, Farrington H (1997) Nutrient limitation and soil development: experimental test of a biogeochemical theory. Biogeochemistry 37:63–75

    Article  Google Scholar 

  • Wang M, Moore TR, Talbot J, Richard PJH (2014) The cascade of C:N:P stoichiometry in an ombrotrophic peatland: from plants to peat. Environ Res Lett 9:024003

    Article  Google Scholar 

  • Weintraub MN, Schimel JP (2003) Interactions between carbon and nitrogen mineralization and soil organic matter chemistry in Arctic tundra soils. Ecosystems 6:129–143

    Article  Google Scholar 

  • Weintraub MN, Schimel JP (2005a) Nitrogen cycling and the spread of shrubs control changes in the carbon balance of Arctic tundra ecosystems. Bioscience 55:408–415

    Article  Google Scholar 

  • Weintraub MN, Schimel JP (2005b) The seasonal dynamics of amino acids and other nutrients in Alaskan Arctic tundra soils. Biogeochemistry 73:359–380

    Article  Google Scholar 

  • Wille C, Kutzbach L, Sachs T, Wagner D, Pfeiffer E-M (2008) Methane emission from Siberian Arctic polygonal tundra: eddy covariance measuring and modeling. Glob Change Biol 14:1395–1408

    Article  Google Scholar 

  • Wind-Mulder HL, Rochefort L, Vitt DH (1996) Water and peat chemistry comparisons of natural and post-harvested peatlands across Canada and their relevance to peatland restoration. Ecol Eng 7:161–181

    Article  Google Scholar 

  • Xu X, Thornton PE, Post WM (2013) A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems. Glob Ecol Biogeogr 22:737–749

    Article  Google Scholar 

Download references

Acknowledgments

The study presented here is part of the German-Russian joint project “Polygons in tundra wetlands: state and dynamics under climate variability in tundra regions (POLYGON)” (Russian Foundation of Basic Research, RFBR grant no. 11-04-91332-NNIO-a and German Research Foundation, DFG grant no. KU 1418/3-1 to Lars Kutzbach and JO 332/14-1 to Hans Joosten). F. Beermann, E.-M. Pfeiffer and L. Kutzbach were supported through the Cluster of Excellence “CliSAP” (EXC177), University of Hamburg, funded by the German Research Foundation (DFG). F. Beermann was also supported through a doctoral fellowship of the University of Hamburg in accordance with the Hamburg Act for the Promotion of Young Researchers and Artists (HmbNFG). We thank our colleagues who helped during the expedition in 2011, especially Lyudmillia A. Pestryakova from the North Eastern Federal University in Yakutsk, Hans Joosten and Juliane Seyfert from the Ernst Moritz Arndt University of Greifswald as well as Lutz Schirrmeister from AWI Potsdam. The analytical work in the laboratories of the University of Hamburg was greatly supported by Susanne Kopelke. Determination of the vegetation communities as well as the indicator plant species for each community was generously conducted by Michael Manthey from the Ernst Moritz Arndt University of Greifswald. We thank Stefan Goen and Dierk Michaelis (Ernst Moritz Arndt University of Greifswald) for identifying the moss species. Martin Schrön (Ernst Moritz Arndt University of Greifswald) and Pim de Klerk (Staatliches Museum für Naturkunde, Karlsruhe) assisted in the preparation of Fig. 3 and Fig. 7.  

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Beermann.

Additional information

Responsible Editor: Colin Bell

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beermann, F., Teltewskoi, A., Fiencke, C. et al. Stoichiometric analysis of nutrient availability (N, P, K) within soils of polygonal tundra. Biogeochemistry 122, 211–227 (2015). https://doi.org/10.1007/s10533-014-0037-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-014-0037-4

Keywords

Navigation