Skip to main content

Advertisement

Log in

Depositional fluxes and sources of particulate carbon and nitrogen in natural lakes and a young boreal reservoir in Northern Québec

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

We investigated the depositional trends of total particles, carbon and nitrogen in a newly created, 600-km2 hydroelectric reservoir in Northern Québec, and compared the results with those observed in lakes of the surrounding region. We show that particulate fluxes exhibit a large degree of spatial heterogeneity in both the reservoir (68–548 mg POC m−2 d−1 and 5–33 mg PN m−2 d−1) and the natural lakes (30–150 mg POC m−2 d−1 and 3–12 mg PN m−2 d−1) and that on average, settling fluxes of the reservoir (211 ± 46 mg POC m−2 d−1 and 14 ± 3 mg PN m−2 d−1) exceeded lake deposition (79 ± 13 mg POC m−2 d−1 and 7 ± 1 mg PN m−2 d−1) by approximately two-fold. Our results also show that the nature of the organic matter reaching the sediments was significantly different between lakes and the reservoir, which can have consequences for benthic metabolism and the long-term storage. We found that sinking fluxes in the reservoir were mostly regulated by local morphological and hydrological conditions, with higher fluxes along or in the vicinity of the old riverbed (average 400 ± 73 mg POC m−2 d−1 and 24 ± 5 mg PN m−2 d−1) and lower fluxes in calmer zones such as side bays (average 106 ± 10 mg POC m−2 d−1 and 8 ± 1 mg PN m−2 d−1). In lakes, where settling fluxes were not linked to the trophy, or dissolved organic carbon, the actual nature of the sedimenting organic material was influenced by lake morphometry and the relative contribution of algal versus terrestrial sources. We conclude that re-suspension and erosion play a major role in shaping the reservoir sinking fluxes which explain both, the higher reservoir deposition and also some of the qualitative differences between the two systems. Despite all these differences, sinking particulate organic carbon fluxes were small and surprisingly similar relative to the surface carbon dioxide emissions in both the reservoir and lakes, representing approximately 16–17 % of the carbon efflux estimated for these same systems in 2008.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Avnimelech Y, Ritvo G, Meijer LE, Kochba M (2000) Water content, organic carbon and dry bulk density in flooded sediments. Aquacult Eng 25(1):25–33

    Article  Google Scholar 

  • Baines SB, Pace ML (1994) Relationships between suspended particulate matter and sinking flux along a trophic gradient and implications for the fate of planktonic primary production. Can J Fish Aquat Sci 51(25):36

    Google Scholar 

  • Barros N, Huszar V, Cole JJ, Tranvik LJ, Bastviken D, del Giorgio PA, Prairie YT, Roland F (2011) Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude. Nat Geosci. doi:10.1038/ngeo1211

    Google Scholar 

  • Bodaly RA, Beaty KG, Hendzel LH, Majewski AR, Paterson MJ, Rolfhus KR, Penn AF, St Louis VL, Hall BD, Matthews CJ, Cherewyk KA, Mailman M, Hurley JP, Schiff SL, Venkiteswaran JJ (2004) Experimenting with hydroelectric reservoirs. Environ Sci Technol 38(18):347A–352A. doi:347A-352A.310.1021/es040614u

    Article  Google Scholar 

  • Bowen R (1991) Isotopes and climates. Elsevier Science Publishers CO., INC. New York, USA

  • Brothers C, Vermaire JC, Gregory-Eaves I (2008) Empirical models for describing recent sedimentation rates in lakes distributed across broad spatial scales. J Paleolimnol 40(4):1003–1019

    Google Scholar 

  • Brothers S, del Giorgio PA, Teodoru CR, Prairie YT (2012) Landscape heterogeneity influences CO2 production in a young boreal reservoir. Can J Fish Aquat Sci 69(3):447–456. doi:10.1139/f2011-174

    Article  Google Scholar 

  • Campbell ID, Vitt DH, Kelker D, Laird LD, Trew D, Kotak B, LeClair D, Bayley S (2000) A first estimate of organic C storage in Holocene lake sediments in Alberta, Canada. J Paleolimnol 4:395–400

    Article  Google Scholar 

  • Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, Duarte CM, Kortelainen P, Downing JA, Middelburg JJ, Melack J (2007) Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10:171–184. doi:10.1007/s10021-006-9013-8

    Article  Google Scholar 

  • Dean WE, Gorham E (1998) Magnitude and significance of carbon burial in lakes, reservoirs, and peatlands. Geology 26:535–538

    Article  Google Scholar 

  • del Giorgio PA, Peters RH (1993) Balance between phytoplankton production and plankton respiration in lakes. Can J Fish Aquat Sci 50:282–289

    Article  Google Scholar 

  • Demarty M, Bastien J, TremblayA Hesslein RH, Gill R (2009) Greenhouse gas emissions from boreal reservoirs in Manitoba and Québec, Canada. Environ Sci Technol 43(23):8905–8915. doi:8910.1021/es8035658

    Article  Google Scholar 

  • Diefendorf AF, Mueller KE, Wing SL, Koch PL, Freeman KH (2010) Global patterns in leaf 13C discrimination and implications for studies of past and future climate. Proc Natl Acad Sci USA 107:5738–5743

    Article  Google Scholar 

  • Downing JA, Cole JJ, Middelburg JJ, Striegl RG, Duarte CM, Kortelainen P, Prairie YT, Laube KA (2008) Sediment organic carbon burial in agriculturally eutrophic impoundments over the last century. Glob Biogeochem Cycles 22, GB1018. doi:10.1029/2006GB002854

  • Duarte CM, Middelburg JJ, Caraco NF (2004) Major role of marine vegetation on the oceanic carbon cycle. Biogeosci Discuss 1:659–679

    Article  Google Scholar 

  • Einsele G, Yan J, Hinderer M (2001) Atmospheric carbon burial in modern lake basins and its significance for the global carbon budget. Glob Planet Change 30:167–195

    Article  Google Scholar 

  • Eldardir M (1994) Sedimentation in Nile High Dam Reservoir, 1987–1992, and sedimentary futurologic aspects. Sediment. Egypt 2:23–39

    Google Scholar 

  • Ferland M-E, del Giorgio PA, Teodoru CR, Prairie YT (2012) Long-term C accumulation and total C stocks in boreal lakes in Northern Québec. Glob Biogeochem Cycles (in press)

  • Friedl G, Wüest A (2002) Disrupting biogeochemical cycles—consequences of damming. Aquat Sci 64:55–65

    Article  Google Scholar 

  • Galy-Lacaux C, Delmas R, Jambert C, Dumestre J-F, Labroue L, Richard S, Gosse P (1997) Gaseous emissions and oxygen consumption in hydroelectric dams: a case study in French Guyana. Glob Biogeochem Cycles 11(4):471–483. doi:410.1029/1097GB01625

    Article  Google Scholar 

  • Hakanson L, Jansson M (1983) Principles of lake sedimentology. Springer, Berlin

    Book  Google Scholar 

  • Hall RI, Leavitt PR, Dixit AS, Quinland R, Smol JP (1999) Limnological succession in reservoirs: a paleo-limnological comparison of two methods of reservoir formation. Can J Fish Aquat Sci 56:1109–1121

    Article  Google Scholar 

  • Hanson PC, Pollard AI, Bade DL, Predick K, Carpenter SR, Foley JA (2004) A model of carbon evasion and sedimentation in temperate lakes. Glob Change Biol 10:1285–1298

    Article  Google Scholar 

  • Hedges JI, Keil RG (1999) Sedimentary organic matter preservation: a test for selective oxic degradation. Am J Sci 299:529–555

    Article  Google Scholar 

  • Hedges JI, Oades JM (1997) Comparative organic geochemistries of soils and marine sediments. Org Geochem 27:319–361

    Google Scholar 

  • Hélie J-F, Hillaire-Marcel C (2006) Sources of particulate and dissolved organic carbon in the St Lawrence River: isotopic approach. Hydrol Process 20:1945–1959

    Article  Google Scholar 

  • Hesslein RH (2005) Using gas exchange estimates to determine net production of CO2 in reservoirs and lakes. In: Tremblay A, Varfalvy L, Roehm CL, Garneau M (eds) Greenhouse gas emissions: fluxes and processes hydroelectric reservoirs and natural environments. Springer, Berlin, pp 563–574

    Chapter  Google Scholar 

  • Houel S, Louchouarn L, Lucotte M, Canuel R, Ghaleb B (2006) Translocation of soil organic matter following reservoir impoundment in boreal systems: Implication for in situ productivity. Limnol Oceanogr 51(3):1497–1513

    Article  Google Scholar 

  • Jonsson A, Jansson M (1997) Sedimentation and mineralisation of organic carbon, nitrogen and phosphorus in a large humic lake, northern Sweden. Arch Hydrobiol 141:45–65

    Google Scholar 

  • Jonsson A, Meili M, Bergstrom A-K, Jansson M (2001) Whole-lake mineralization of allochthonous and autochthonous organic carbon in a large humic lake (Ortrasket, N Sweden). Limnol Oceanogr 46:1691–1700

    Article  Google Scholar 

  • Karlsson J, Jonsson A, Meili M, Jansson M (2003) Control of zooplankton dependence on allochthonous organic carbon in humic and clear-water lakes in northern Sweden. Limnol Oceanogr 48:269–276

    Article  Google Scholar 

  • Kendall C, Silva SR, Kelly VJ (2001) Carbon and nitrogen isotopic compositions of particulate organic matter in four large-river systems across the United States. Hydrol Process 15:1301–1346

    Article  Google Scholar 

  • Kohn MJ (2010) Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate. Proc Natl Acad Sci USA 107:19691–19695

    Article  Google Scholar 

  • Kunz MJ, Anselmetti FS, Wuest A, Wehrli B, Vollenweider A, Thuring S, Senn DB (2011) Sediment accumulation and carbon, nitrogen, and phosphorus deposition in the large tropical reservoir Lake Kariba (Zambia/Zimbabwe). J Geophys Res 116:G03003. doi:10.1029/2010JG001538

    Article  Google Scholar 

  • Marchand D, Prairie YT, del Giorgio PA (2009) Linking forest fires to Lake Metabolism and carbon dioxide emissions in the boreal region of Northern Québec. Glob Change Biol 15(12):2861–2873. doi:10.1111/j.1365-2486.2009.01979.x

    Article  Google Scholar 

  • Marty J, Planas D (2008) Comparison of methods to determine algal δ13C in freshwater. Limnol Oceanogr: Methods 6:51–63

    Article  Google Scholar 

  • Meybeck M (1993) Riverine transport of atmospheric carbon: sources, global typology and budget. Water Air Soil Pollut 70:443–463

    Article  Google Scholar 

  • Meyers PA (1994) Preservation of elemental and isotopic source identification of sedimentary organic matter. Chem Geol 114:289–302

    Article  Google Scholar 

  • Meyers PA, Ishiwatari R (1993) Lacustrine organic geochemistry—an overview of indicators of organic matter sources and diagenesis in lake sediments. Org Geochem 20:867–900

    Article  Google Scholar 

  • Molot LA, Dillon PJ (1996) Storage of terrestrial carbon in boreal lake sediments and evasion to the atmosphere. Glob Biogeochem Cycles 10(3):483–492. doi:10.1029/96GB01666

    Article  Google Scholar 

  • Morris GL, Fan J (1998) Reservoir sedimentation handbook: design and management of dams, reservoirs, and watersheds for sustainable use. McGraw-Hill, New York, USA, p 848

    Google Scholar 

  • Mulholland PJ, Elwood JW (1982) The role of lake and reservoir sediments as sinks in the perturbed global carbon cycle. Tellus 34:490–499

    Article  Google Scholar 

  • Osidele OO, Beck MB (2004) Food web modelling for investigating ecosystem behavior in large reservoirs of the south-eastern United States: lessons from Lake Lanier, Georgia. Ecol Model 173:129–158

    Article  Google Scholar 

  • Pace ML, Prairie YT (2005) Respiration in lakes. In: del Giorgio PA, Williams PJLB (eds) Respiration in aquatic ecosystems. Oxford University Press, Oxford, pp 103–121

    Chapter  Google Scholar 

  • Paterson MJ, Findlay D, Beaty K, Schindler EU, Stainton M, MCCullough G (1997) Changes in the planktonic food web of a new experimental reservoir. Can J Fish Aquat Sci 54:1088–1102

    Google Scholar 

  • Probst JL (2002) The role of continental erosion and river transports in the global carbon cycle. Geochim Cosmochim Acta 69:A7252005

    Google Scholar 

  • Roehm CL, Prairie YT, del Giorgio PA (2009) The pCO2 dynamics in lakes in the boreal region of northern Québec, Canada. Glob Biogeochem Cycles 23:GB3013. doi:10.1029/2008GB003297

  • Rosenberg DM, Berkes F, Bodaly RA, Hecky CA, Kelly CA, Rudd JWM (1997) Large-scale impacts of hydroelectric development. Environ Rev 5:27–54

    Article  Google Scholar 

  • Sarmiento JL, Sundquist ET (1992) Revised budget for the oceanic uptake of anthropogenic carbon dioxide. Nature 356(6370):589–593

    Article  Google Scholar 

  • Schlünz B, Schneider RR (2000) Transport of riverine organic carbon to the oceans: implications for the carbon cycle. Geologische Rundschau (International Journal of Earth Sciences) 88:599–606

    Article  Google Scholar 

  • Sobek S, Durisch-Kaiser E, Zurbrugg R, Wongfun N, Wessels M, Pasche N, Wehrli B (2009) Organic carbon burial efficiency in lake sediments controlled by oxygen exposure time and sediment source. Limnol Oceanogr 54(6):2243–2254

    Article  Google Scholar 

  • Squires MM, Mazzucchi D, Devito KJ (2006) Carbon burial and infill rates in small Western Boreal lakes: physical factors affecting carbon storage. Can J Fish Aquat Sci 63:711–720. doi:10.1139/F05-252

    Article  Google Scholar 

  • Stallard RF (1998) Terrestrial sedimentation and the C cycle: coupling weathering and erosion to carbon storage. Glob Biogeochem Cycles 12:231–237

    Article  Google Scholar 

  • St. Louis VL, Kelly CA, Duchemin É, Rudd JWM, Rosenberg DM (2000) Reservoir surfaces as sources of greenhouse gases to the atmosphere: a global estimate. BioScience 50:766–775

  • Sullivan BE, Prahl FG, Small LF, Covert PA (2001) Seasonality of phytoplankton production in the Columbia River: a natural or anthropogenic matter? Geochim Cosmochim Acta 65:1125–1139

    Article  Google Scholar 

  • Sundquist ET (2003) The global carbon dioxide budget. Science 259:934–935

    Article  Google Scholar 

  • Teodoru CR, Wüest A, Wehrli B (2006) Independent review of the environmental impact assessment report for the Merowe Dam Project (Nile River, Sudan), Eawag Report, Switzerland. http://www.eawag.ch/forschung/surf/publikationen/2006/2006_merowe

  • Teodoru CR, del Giorgio PA, Prairie YT, Camire M (2009) pCO2 dynamics in boreal streams of northern Québec, Canada. Glob Biogeochem Cycles 23(2):1–11, GB2012. doi:10.1029/2008GB003404

    Google Scholar 

  • Teodoru CR, del Giorgio PA, Prairie YT (2010) Spatial heterogeneity of surface CO2 fluxes in a newly created Eastmain-1 reservoir in northern Québec, Canada. Ecosystems 14:28–46. doi:10.1007/s10021-010-9393-7.

    Article  Google Scholar 

  • Teodoru CR, Bastien J, Bonneville M-C, del Giorgio PA, Demarty M, Garneau M, Hélie J-F, Pelletier L, Prairie YT, Roulet N, Strachan I, Tremblay A (2012) The net carbon footprint of a newly-created boreal hydroelectric reservoir. Glob Biogeochem Cycles 26, GB2016. doi:10.1029/2011GB004187

  • Thornton KW (1990) Sedimentary processes. In Thornton KW, Kimmel BL, Payne FE (eds) Reservoir limnology: ecological perspective. Wiley

  • Tranvik LJ, Downing JA, Cotner JB, Loiselle SA, Striegl RG, Ballatore TJ, Dillon P, Finlay K, Fortino K, Knoll LB, Kortelainen PL, Kutser T, Larsen S, Laurion I, Leech DM, McCallister SL, McKnight DM, Melack JM, Overholt E, Porter JA, Prairie YT, Renwick WH, Roland F, Sherman BS, Schindler DW, Sobek S, Tremblay A, Vanni MJ, Verschoor AM, von Wachenfeldt E, Weyhenmeyer GA (2009) Lakes and reservoirs as regulators of carbon cycling and climate. Limnol Oceanogr 54(6):2298–2314

    Google Scholar 

  • Vachon D, Prairie YT, Cole JJ (2010) The relationship between near-surface turbulence and gas transfer velocity in freshwater systems and its implications for floating chamber measurements of gas exchange. Limnol Oceanogr 55(4):1723–1732

    Article  Google Scholar 

  • von Wachenfeldt E, Tranvik LJ (2008) Sedimentation in boreal lakes—the role of flocculation of allochthonous dissolved organic matter in water column. Ecosystems 11:803–814

    Article  Google Scholar 

  • Vörösmarty CJ, Sahagian D (2000) Anthropogenic disturbance of the terrestrial water cycle. Bioscience 50(9):753–765

    Article  Google Scholar 

  • Vörösmarty CJ, Sharma K, Fekete B, Copeland AH, Holden J, Marble J, Lough JA (1997) The storage and aging of continental runoff in large reservoir systems of the 836 world. Ambio 26:210–219

    Google Scholar 

Download references

Acknowledgments

This study was supported both, financially and logistically by Hydro-Québec, through the Hydro-Québec/UQAM Eastmain-1 Research Project. We would like to thank to the co-ordinator of the project, A. Tremblay (Hydro-Québec) for his continuing support as well as S. Barette, S. Brothers and D. Marchand for field assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristian R. Teodoru.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teodoru, C.R., del Giorgio, P.A., Prairie, Y.T. et al. Depositional fluxes and sources of particulate carbon and nitrogen in natural lakes and a young boreal reservoir in Northern Québec. Biogeochemistry 113, 323–339 (2013). https://doi.org/10.1007/s10533-012-9760-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-012-9760-x

Keywords

Navigation