Skip to main content

Advertisement

Log in

Are Swedish forest soils sinks or sources for CO2—model analyses based on forest inventory data

  • Original Paper
  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Forests soils should be neither sinks nor sources of carbon in a long-term perspective. From a Swedish perspective the time since the last glaciation has probably not been long enough to reach a steady state, although changes are currently very slow. In a shorter perspective, climatic and management changes over the past 100 years have probably created imbalances between litter input to soils and organic carbon mineralisation. Using extant data on forest inventories, we applied models to analyse possible changes in the carbon stocks of Swedish forest soils. The models use tree stocks to provide estimates of tree litter production, which are fed to models of litter decomposition and from which carbon stocks are calculated. National soil carbon stocks were estimated to have increased by 3 Tg yr−1 or 12–13 g m−2 yr−1 in the period 1926–2000 and this increase will continue because soil stocks are far from equilibrium with current litter inputs. The figure obtained is likely to be an underestimation because wet sites store more carbon than predicted here and the inhibitory effect of nitrogen deposition on soil carbon mineralisation was neglected. Knowledge about site history prior to the calculation period determines the accuracy of current soil carbon stocks estimates, although changes can be more accurately estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ågren GI, Bosatta E (1998) Theoretical ecosystem ecology – understanding element cycles. Cambridge University Press, Cambridge

    Google Scholar 

  • Ågren GI, Hyvönen R (2003) Changes in carbon stores in Swedish forest soils due to increased biomass harvest and increased temperatures analysed with a semi-empirical model. For Ecol Manage 174:25–37

    Article  Google Scholar 

  • Ågren GI, Bosatta E, Magill AM (2001) Combining theory and experiment to understand effects of inorganic nitrogen on litter decomposition. Oecologia 128:94–98

    Article  Google Scholar 

  • Albrektson A (1988) Needle litterfall in stands of Pinus sylvestris L in Sweden, in relation to site quality, stand age and latitude. Scand J For Res 3:333–342

    Article  Google Scholar 

  • Bellamy PH, Loveland PJ, Bradley RI, Lark RM, Kirk GJD (2005) Carbon losses from all soils across England and Wales 1978–2003. Nature 437:245–248

    Article  Google Scholar 

  • Berg B, Berg MP, Cortina J, Flower-Ellis J, Gallardo A, Johansson MB, Lundmark JE, Madeira M (1993) Amounts of litterfall in some European coniferous forests. In: Breymeyer A (ed) Proceedings SCOPE Seminar. Conference Paper 18. Geography of Carbon Budget Processes in Terrestrial Ecosystems. Szymbark, 17–23 August 1991. Polish Academy of Sciences, Warsaw, pp 124–146

  • Berg B, Albrektson A, Berg MP, Cortina J, Johansson MB, Gallardo A, Madeira M, Pausas J, Kratz W, Vallejo R, McClaugherty C (1999a) Amounts of litter fall in some pine forests in a European transect, in particular Scots pine. Ann For Sci 56:625–639

    Google Scholar 

  • Berg B, Johansson MB, Tjarve I, Gaitnieks T, Rokjanis B, Beier C, Rothe A, Bolger T, Göttlein A, Gerstberger P (1999b) Needle litterfall in a North European spruce forest transect. Reports in forest ecology and forest soils 80. Swedish University of Agricultural Sciences, Uppsala, pp 1–31

  • Berggren D, Bergkvist B, Johansson MB, Langvall O, Majdi H, Melkerud PA, Nilsson Å, Weslien P, Olsson M (2004) A description of LUSTRA’s common field sites. Reports in forest ecology and forest soils 87. Swedish University of Agricultural Sciences, Uppsala

  • Berggren Kleja D, Svensson M, Majdi H, Langvall O, Jansson PE, Lindroth, A, Weslien, P, Bergkvist B, Johansson MB (2007) Pools and fluxes of carbon in three Norway spruce ecosystems along a climatic gradient in Sweden. Biogeochemistry (this volume)

  • Coleman K, Jenkinson DS (1996) RothC-26.3 – A model for the turnover of carbon in soil. In: Powlson DS, Smith P, Smith JU (eds) Evaluation of soil organic matter models. Springer-Verlag, Berlin, pp 237–247

    Google Scholar 

  • Covington WW (1981) Changes in forest floor organic matter and nutrient content following clear cutting in northern hardwoods. Ecology 62:41–48

    Article  Google Scholar 

  • de Wit HA, Palosuo T, Hylen G, Liski J (2006) A carbon budget of forest biomass and soils in southeast Norway calculated using a widely applicable method. For Ecol Manage 225:15–26

    Article  Google Scholar 

  • Hyvönen R, Ågren GI (2001) Decomposer invasion rate, decomposer growth rate, and substrate chemical quality – How they influence soil organic matter turnover. Can J For Res 31:1594–1601

    Article  Google Scholar 

  • Janzen HH (2006) The soil carbon dilemma: shall we hoard it or use it? Soil Biol Biochem 38:419–424

    Article  Google Scholar 

  • Lilliesköld M, Nilsson J (1997) Kol i marken – Konsekvenser av markanvändning i skogs-och jordbruk. Rapport 4782. Naturvårdsverket, Stockholm

  • Liski J, Perruchoud D, Karjalainen T (2002) Increasing carbon stocks in the forest soils of western Europe. For Ecol Manage 169:159–175

    Article  Google Scholar 

  • Marklund LG (1988) Biomassafunktioner för tall, gran och björk i Sverige. Report No. 45. Department of Forest Survey, Swedish University of Agricultural Sciences, Umeå

  • Martin JL, Gower ST, Plaut J, Holmes B (2005) Carbon pools in a boreal mixedwood logging chronosequence. Glob Change Biol 11:1883–1894

    Google Scholar 

  • Olsson M, Erlandsson M, Nilsson T, Nilsson Å, Stendahl J (2007) Organic carbon in Swedish podsols and its relation to site factors (this volume)

  • Peltoniemi M, Mäkipää R, Liski J, Tamminen P (2004) Changes in soil carbon with stand age – an evaluation of a modelling method with empirical data. Glob Change Biol 10:2078–2091

    Article  Google Scholar 

  • Smith P (2005) An overview of the permanence of soil organic carbon stocks: influence of direct human-induced, indirect and natural effects. Eur J Soil Sci 56:673–680

    Article  Google Scholar 

Download references

Acknowledgements

This work formed part of the LUSTRA research programme, supported by the Foundation for Strategic Environmental Research, Mistra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Göran I. Ågren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ågren, G.I., Hyvönen, R. & Nilsson, T. Are Swedish forest soils sinks or sources for CO2—model analyses based on forest inventory data. Biogeochemistry 82, 217–227 (2007). https://doi.org/10.1007/s10533-006-9064-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-006-9064-0

Keywords

Navigation