Biogeochemistry

, Volume 72, Issue 1, pp 87–121

Agricultural management impacts on soil organic carbon storage under moist and dry climatic conditions of temperate and tropical regions

Article

DOI: 10.1007/s10533-004-0360-2

Cite this article as:
Ogle, S.M., Breidt, F.J. & Paustian, K. Biogeochemistry (2005) 72: 87. doi:10.1007/s10533-004-0360-2

Abstract.

We conducted a meta-analysis to quantify the impact of changing agricultural land use and management on soil organic carbon (SOC) storage under moist and dry climatic conditions of temperate and tropical regions. We derived estimates of management impacts for a carbon accounting approach developed by the Intergovernmental Panel on Climate Change, addressing the impact of long-term cultivation, setting-aside land from crop production, changing tillage management, and modifying C input to the soil by varying cropping practices. We found 126 articles that met our criteria and analyzed the data in linear mixed-effect models. In general, management impacts were sensitive to climate in the following order from largest to smallest changes in SOC: tropical moist>tropical dry>temperate moist>temperate dry. For example, long-term cultivation caused the greatest loss of SOC in tropical moist climates, with cultivated soils having 0.58  ± 0.12, or 58% of the amount found under native vegetation, followed by tropical dry climates with 0.69 ± 0.13, temperate moist with 0.71 ± 0.04, and temperate dry with 0.82 ± 0.04. Similarly, converting from conventional tillage to no-till increased SOC storage over 20 years by a factor of 1.23 ± 0.05 in tropical moist climates, which is a 23% increase in SOC, while the corresponding change in tropical dry climates was 1.17 ± 0.05, temperate moist was 1.16 ± 0.02, and temperate dry was 1.10 ± 0.03. These results demonstrate that agricultural management impacts on SOC storage will vary depending on climatic conditions that influence the plant and soil processes driving soil organic matter dynamics.

Keywords

AgroecosystemsCarbon sequestrationGreenhouse gas mitigationIPCCLand use and managementSoil organic carbon

Copyright information

© Springer 2005

Authors and Affiliations

  • Stephen M. Ogle
    • 1
  • F. Jay Breidt
    • 2
  • Keith Paustian
    • 1
    • 3
  1. 1.National Resource Ecology LaboratoryColorado State UniversityFort CollinsUSA
  2. 2.Department of StatisticsColorado State UniversityFort CollinsUSA
  3. 3.Department of Soil and Crop ScienceColorado State UniversityFort CollinsUSA