Skip to main content
Log in

Multi-substrate biodegradation interaction of 1, 4-dioxane and BTEX mixtures by Acinetobacter baumannii DD1

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

This study evaluated substrate interactions during the aerobic biodegradation of 1, 4-dioxane and BTEX mixtures by a pure culture, Acinetobacter baumannii DD1, which is capable of utilizing 1, 4-dioxane for growth. A. baumannii DD1 could utilize BTEX as a sole carbon source, but could not utilize m-xylene and p-xylene. In binary mixtures, there was a lag of about 14 h before the degradation of BTE, and 1, 4-dioxane only started to be utilized when BTE was completely degraded by 1, 4-dioxane-grown DD1. Furthermore, the biodegradation rate of 1, 4-dioxane decreased from 73.33 to 40.74 mg/(h g dry weight) after the biodegradation of benzene. 1, 4-dioxane could not be degraded after the biodegradation of o-xylene in 80 h. DD1 could also not degrade m-xylene and p-xylene coexisting with 1, 4-dioxane. The ability of DD1 to degrade BTEX occurred in the following order: benzene > ethylbenzene > toluene > o-xylene > m-xylene = p-xylene. The biodegradation of 1, 4-dioxane was not activated in the mixture with o-xylene, primarily because of the accumulation of the specific toxic intermediate, 2, 3-dimethylphenol. The lag in BTE degradation was presumably because of the induction of enzymes necessary for BTE degradation. Additionally, SDS-PAGE analysis demonstrated that there were different proteins during the degradation of benzene and 1, 4-dioxane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agency for Toxic Substances and Disease Registry (ATSDR) (2012) Toxicological profile for 1, 4-dioxane. United States Department of Health and Human Services, Public Health Service, Atlanta http://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=955&tid=199. Accessed 1 Oct 2012

  • Bernhardt D, Diekmann H (1991) Degradation of dioxane, tetrahydrofuran and other cyclic ethers by an environmental Rhodococcus strain. Appl Microbiol Biotechnol 36:120–123

    Article  PubMed  CAS  Google Scholar 

  • Burback BL, Perry JJ (1993) Biodegradation and biotransformation of groundwater pollutant mixtures by Mycobacterium vaccae. Appl Environ Microbiol 59:1025–1029

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cai TM, Chen LW, Ren Q, Cai S, Zhang J (2011) The biodegradation pathway of triethylamine and its biodegradation by immobilized Arthrobacter protophormiae cells. J Hazard Mater 186:56–66

    Google Scholar 

  • Deeb RA, Hu HY, Hanson JR, Scow KM, Alvarez-Cohen L (2001) Substrate interactions in BTEX and MTBE mixtures by an MTBE-degrading isolate. Environ Sci Technol 35:312–317

    Article  PubMed  CAS  Google Scholar 

  • Duangduan Y, Voravit C, Thanomsak B, Pensri W, Herbert FH (2008) Characterization and health risk assessment of volatile organic compounds in gas service station workers. Environ Asia 2:21–29

    Google Scholar 

  • Grazia B, Paola B, Enrica G, Stefano T (1987) Isolation of a Pseudomonas stutzeri strain that degrades o-xylene. Appl Environ Microbiol 53:2129–2132

    Google Scholar 

  • Huang HL, Shen DS, Li N, Shan D, Shentu JL, Zhou YY (2014) Biodegradation of 1, 4-dioxane by a novel strain and its biodegradation pathway. Water Air Soil Pollut 225:2135–2146

    Article  Google Scholar 

  • Kahru A, Pollumaa L, Reiman R, Ratsep A, Liidera M, Maloveryan A (2000) The toxicity and biodegradability of eight main phenolic compounds characteristic to the oil-shale industry wastewaters: a test battery approach. Toxicology 15:431–442

    CAS  Google Scholar 

  • Kenneth FR, Douglas CM, Julia DBR (2000) Biodegradation Kinetics of benzene, toluene, and phenol as single and mixed substrates for Pseudomonas putida F1. Biotechnol Bioeng 69:385–400

    Article  Google Scholar 

  • Kim YM, Jeon JR, Murugesan K, Kim EJ, Chang YS (2009) Biodegradation of 1, 4-dioxane and transformation of related cyclic compounds by a newly isolated Mycobacterium sp. PH-06. Biodegradation 20:511–519

    Article  PubMed  CAS  Google Scholar 

  • Kim SJ, Park SJ, Cha IT, Min D, Kim JS, Chung WH, Chae JC, Jeon CO, Rhee SK (2014) Metabolic versatility of toluene-degrading, iron-reducing bacteria in tidal flat sediment, characterized by stable isotope probing-based metagenomic analysis. Environ Microbiol 16(1):189–204

    Article  PubMed  CAS  Google Scholar 

  • Kunapuli U, Lueders T, Meckenstock RU (2007) The use of stable isotope probing to identify key iron-reducing microorganisms involved in anaerobic benzene degradation. ISME J 1(7):643–653

    Article  PubMed  CAS  Google Scholar 

  • Li MY, Mathieu J, Yang Y, Fiorenza S, Deng Y, He ZL, Zhou JZ, Alvarez PJJ (2013) Widespread distribution of soluble di-Iron monooxygenase (SDIMO) genes in arctic groundwater impacted by 1, 4-dioxane. Environ Sci Technol 47:9950–9958

    Article  PubMed  CAS  Google Scholar 

  • Liou JC, DeRito C, Madsen E (2008) Field-based and laboratory stable isotope probing surveys of the identities of both aerobic and anaerobic benzene-metabolizing microorganisms in freshwater sediment. Environ Microbiol 10(8):1964–1977

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:87–98

    Google Scholar 

  • Mahendra S, Alvarez-Cohen L (2006) Kinetics of 1, 4-dioxane biodegradation by monooxygenase-expressing bacteria. Environ Sci Technol 40:5435–5442

    Article  PubMed  CAS  Google Scholar 

  • Mahendra S, Petzold CJ, Baidoo EE, Keasling JD, Alvarez-Cohen L (2007) Identification of the intermediates of in vivo oxidation of 1, 4-dioxane by monooxygenase-containing bacteria. Environ Sci Technol 41:7330–7336

    Article  PubMed  CAS  Google Scholar 

  • Mahendra S, Grostern A, Alvarez-Cohen L (2013) The impact of chlorinated solvent co-contaminants on the biodegradation kinectics of 1,4-dioxane. Chemosphere 91(1):88–92

    Article  PubMed  CAS  Google Scholar 

  • Marion M, Holger F, Stefan K, Gerd UB, Eyk H, Mario S (2002) Determination of naturally occurring MTBE biodegradation by analysing metabolites and biodegradation by-products. Appl Environ Microbiol 87:37–53

    Google Scholar 

  • Nakamiya K, Hashimoto S, Ito H, Edmonds JS, Morita M (2005) Degradation of 1, 4-dioxane and cyclic ethers by an isolated fungus. Appl Environ Microbiol 71:1254–1258

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Noguchi M, Kurisu F, Kasuga I, Furumai H (2014) Time-resolved DNA stable isotope probing links desulfobacterales-and coriobacteriaceae-related bacteria to anaerobic degradation of benzene under methanogenic conditions. Microbes Environ 29(2):191

    Article  PubMed  PubMed Central  Google Scholar 

  • Oka A, Phelps C, McGuinness L, Mumford A, Young L, Kerkhof L (2008) Identification of critical members in a sulfidogenic benzene-degrading consortium by DNA stable isotope probing. Appl Environ Microbiol 74(20):6476–6480

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Parales RE, Adamus JE, White N, May HD (1994) Degradation of 1, 4-dioxane by an actinomycete in pure culture. Appl Environ Microbiol 60:4527–4530

    PubMed  CAS  PubMed Central  Google Scholar 

  • Prenafeta-Boldú FX, Vervoort J, Grotenhuis JTC, Groenestijn JW (2002) Substrate interactions during the biodegradation of Benzene, Toluene, Ethylbenzene, and Xylene (BTEX) Hydrocarbons by the Fungus Cladophialophora sp. Strain T1. Appl Environ Microbiol 68(6):2660–2665

    Article  PubMed  PubMed Central  Google Scholar 

  • Sala-trepat JM, Evans WC (1971) The meta cleavage of catechol by Azotobacter species 4-oxalocrotonate pathway. Eur J Biochem 20:400–413

    Article  PubMed  CAS  Google Scholar 

  • Sei K, Miyagaki K, Kakinoki T, Fukugasako K, Inoue D, Ike M (2013) Isolation and characterization of bacterial strains that have high ability to degrade 1, 4-dioxane as a sole carbon and energy source. Biodegradation 24:665–674

    Article  PubMed  CAS  Google Scholar 

  • Shim H, Yang ST (1999) Biodegradation of benzene, toluene, ethylbenzene, and o-xylene by a coculture of Pseudomonas putida and Pseudomonas fluorescens immobilized in a fibrous-bed bioreactor. J Biotechnol 69:99–112

    Article  Google Scholar 

  • Sugiura T, Ogawa H (2009) Thermodynamic properties of solvation of aromatic compounds in cyclohexane, heptane, benzene, 1,4-dioxane, and chloroform at 298.15K. J Chem Thermodyn 41:1297–1302

    Article  CAS  Google Scholar 

  • Sun W, Cupples AM (2012) Diversity of five anaerobic toluene-degrading microbial communities investigated using stable isotope probing. Appl Environ Microbiol 78(4):972–980

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sun W, Xie S, Luo C, Cupples AM (2010) Direct link between toluene degradation in contaminated-site microcosms and a Polaromonas strain. Appl Environ Microbiol 76(3):956–959

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sun WM, Sun XX, Cupples AM (2012) Anaerobic MTBE degrading microorganisms identified in wastewater treatment plant samples using stable isotope probing. Appl Environ Microbiol 78:2973–2980

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sun W, Sun X, Cupples AM (2014) Identification of Desulfosporosinus as toluene-assimilating microorganisms from a methanogenic consortium. Int Biodeterior Biodegrad 88:13–19

    Article  CAS  Google Scholar 

  • Vogt C, Kleinsteuber S, Richnow HH (2011) Anaerobic benzene degradation by bacteria. Microb Biotechnol 4(6):710–724

    Article  PubMed  PubMed Central  Google Scholar 

  • Young-Sook O, Zarook S, Basil CB, Richard B (1994) Interactions between benzene, toluene, and p-Xylene (BTX) during their biodegradation. Biotechnol Bioeng 44:533–538

    Article  Google Scholar 

  • Zeyer J, Wasserfallen A, Timmis KN (1985) Microbial mineralization of ring-substituted anilines through an ortho-cleavage pathway. Appl Environ Microbiol 50:447–453

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang XQ, Feng HJ, Shan D, Shentu JL, Wang MZ, Yin J, Shen DS, Huang BC, Ding YC (2014) The effect of electricity on 2–fluoroaniline removal in abioelectrochemically assisted microbial system (BEAMS). Electrochim Acta 135:439–446

    Article  CAS  Google Scholar 

  • Zhou YY, Chen DZ, Zhu RY, Chen JM (2011) Substrate interactions during the biodegradation of BTEX and THF mixtures by Pseudomonas oleovorans DT4. Bioresour Technol 102:6644–6649

    Article  PubMed  CAS  Google Scholar 

  • Zhu L, Zhou JH, Lv ML, Yu HT, Zhao H, Xu XY (2015) Specific component comparison of extracellular polymeric substances (EPS) in flocs and granular sludge using EEM and SDS-PAGE. Chemosphere 121:26–32

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Fundamental Research Funds for Zhejiang Gongshang University [3100XJ1514154].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongsheng Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Huang, H. & Shen, D. Multi-substrate biodegradation interaction of 1, 4-dioxane and BTEX mixtures by Acinetobacter baumannii DD1. Biodegradation 27, 37–46 (2016). https://doi.org/10.1007/s10532-015-9753-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-015-9753-2

Keywords

Navigation