Skip to main content
Log in

Aerobic degradation study of three fluoroanilines and microbial community analysis: the effects of increased fluorine substitution

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

The fate of fluorinated compounds in the environment, especially polyfluorinated aromatics, is a matter of great concern. In this work, 4-Fluoroaniline (4-FA), 2,4-Difluoroanilines (2,4-DFA), and 2,3,4-Trifluoroanilines (2,3,4-TFA), were chosen as the target pollutants to study their biodegradability under aerobic conditions. The required enriched time of the mixed bacterial culture for degrading 4-FA, 2,4-DFA, and 2,3,4-TFA was 26, 51, and 165 days, respectively, which suggested that the longer enrichment time was required with the increase of fluorine substitution. At the initial concentrations of 100–200 mg L−1, the 4-FA, 2,4-DFA, and 2,3,4-TFA could be degraded completely by the mixed bacterial culture. The maximum specific degradation rates of 4-FA, 2,4-DFA, and 2,3,4-TFA were 22.48 ± 0.55, 15.27 ± 2.04, and 8.84 ± 0.93 mg FA (g VSS h)−1, respectively. Also, the three FAs enriched cultures showed certain potential of degrading other two FAs. The results from enzyme assay suggested the expression of meta-cleavage pathways during three FAs degradation. The denaturing gradient gel electrophoresis analysis revealed that unique bacterial communities were formed after FAs enrichment and these were principally composed of β-Proteobacteria, Oscillatoriophycideae, δ-Proteobacteria, α-Proteobacteria, Thermales, Xanthomonadales, Deinococci, Flavobacteriia, and Actinobacteridae. The Shannon-Wiener indexes in three FAs enriched culture decreased with the increase of fluorine substitution, indicating the significant effect of fluorine substitution on the microbial diversity. These findings supply important information on the fate of three FAs under aerobic environment, and the bacterial communities in their degradation systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbott BD, Wolf CJ, Das KP, Zehr RD, Schmid JE, Lindstrom AB, Strynar MJ, Lau C (2009) Developmental toxicity of perfluorooctane sulfonate (PFOS) is not dependent on expression of peroxisome proliferator activated receptor-alpha (PPAR alpha) in the mouse. Reprod Toxicol 27(3–4):258–265

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402. doi:10.1093/nar/25.17.3389

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Amadio J, Murphy CD (2010) Biotransformation of fluorobiphenyl by Cunninghamella elegans. Appl Microbiol Biotechnol 86(1):345–351. doi:10.1007/s00253-009-2346-4

    Article  CAS  PubMed  Google Scholar 

  • Amorim CL, Carvalho MF, Afonso CMM, Castro PML (2013) Biodegradation of fluoroanilines by the wild strain Labrys portucalensis. Int Biodeterior Biodegrad 80:10–15. doi:10.1016/j.ibiod.2013.02.001

    Article  CAS  Google Scholar 

  • Arora PK, Bae H (2014) Bacterial degradation of chlorophenols and their derivatives. Microb Cell Fact 13 doi: 10.1186/1475-2859-13-31

  • Bacosa HP, Suto K, Inoue C (2012) Bacterial community dynamics during the preferential degradation of aromatic hydrocarbons by a microbial consortium. Int Biodeterior Biodegrad 74:109–115. doi:10.1016/j.ibiod.2012.04.022

    Article  CAS  Google Scholar 

  • Balcke GU, Wegener S, Kiesel B, Benndorf D, Schlomann M, Vogt C (2008) Kinetics of chlorobenzene biodegradation under reduced oxygen levels. Biodegradation 19(4):507–518. doi:10.1007/s10532-007-9156-0

    Article  CAS  PubMed  Google Scholar 

  • Bartels I, Knackmuss HJ, Reineke W (1984) Suicide inactivation of catechol 2,3-dioxygenase from Pseudomonas-Putida mt-2 by 3-halocatechols. Appl Environ Microbiol 47(3):500–505

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boersma FGH, McRoberts WC, Cobb SL, Murphy CD (2004) A F-19 NMR study of fluorobenzoate biodegradation by Sphingomonas sp HB-1. FEMS Microbiol Lett 237(2):355–361. doi:10.1016/j.femsle.2004.06.052

    Article  CAS  PubMed  Google Scholar 

  • Boulanger B, Vargo JD, Schnoor JL, Hornbuckle KC (2005) Evaluation of perfluorooctane surfactants in a wastewater treatment system and in a commercial surface protection product. Environ Sci Technol 39(15):5524–5530

    Article  CAS  PubMed  Google Scholar 

  • Carvalho MDF, Ferreira MIM, Moreira IS, Castro PML, Janssen DB (2007) Degradation of fluorobenzene by a Rhizobiales strain F11 via ortho cleavage of 4-fluorocatechol and catechol. J Biotechnol 131(2):S249–S249. doi:10.1016/j.jbiotec.2007.07.451

    Article  Google Scholar 

  • Carvalho G, Marques R, Lopes AR, Faria C, Noronha JP, Oehmen A, Nunes OC, Reis MAM (2010) Biological treatment of propanil and 3,4-dichloroaniline: kinetic and microbiological characterisation. Water Res 44(17):4980–4991. doi:10.1016/j.watres.2010.08.006

    Article  CAS  PubMed  Google Scholar 

  • Chen YJ, Wang ZY, Mao LA, Gao SX (2010) QSBR Study on the Biodegradation Rate Constant of Chloro-phenol Compounds. Chin J Struct Chem 29(6):895–899

    CAS  Google Scholar 

  • Chiavola A, Baciocchi R, Barducci F (2010) 3-chlorophenol biodegradation in a sequencing batch reactor: kinetic study and effect of the filling time. Water Air Soil Pollut 212(1–4):219–229. doi:10.1007/s11270-010-0334-z

    Article  CAS  Google Scholar 

  • Duque AF, Bessa VS, Carvalho MF, de Kreuk MK, van Loosdrecht MCM, Castro PML (2011) 2-Fluorophenol degradation by aerobic granular sludge in a sequencing batch reactor. Water Res 45(20):6745–6752. doi:10.1016/j.watres.2011.10.033

    Article  CAS  PubMed  Google Scholar 

  • Esseili MA, Kassem II, Sigler V (2008) Optimization of DGGE community fingerprinting for characterizing Escherichia coli communities associated with fecal pollution. Water Res 42(17):4467–4476. doi:10.1016/j.watres.2008.08.002

    Article  CAS  PubMed  Google Scholar 

  • Evangelista S, Cooper DG, Yargeau V (2010) The effect of structure and a secondary carbon source on the microbial degradation of chlorophenoxy acids. Chemosphere 79(11):1084–1088. doi:10.1016/j.chemosphere.2010.03.018

    Article  CAS  PubMed  Google Scholar 

  • Gu JSZ, H.B (2005) The new method of synthesis 2, 3, 4-Trifluoronitrobenzene. Zhe Jiang Chemical Industry 36(11): 15-16 (in Chinese)

  • Hughes D, Clark BR, Murphy CD (2011) Biodegradation of polyfluorinated biphenyl in bacteria. Biodegradation 22(4):741–749. doi:10.1007/s10532-010-9411-7

    Article  CAS  PubMed  Google Scholar 

  • Jianfu Z (1991) Study on biodegradability of benzene chlorides. Environ Sci 13(2):36–38 (in Chinese)

    Google Scholar 

  • Khan MZ, Mondal PK, Sabir S, Tare V (2011) Degradation pathway, toxicity and kinetics of 2,4,6-trichlorophenol with different co-substrate by aerobic granules in SBR. Bioresour Technol 102(13):7016–7021

    Article  CAS  PubMed  Google Scholar 

  • Koizumi A, Harada K, Saito N, Inoue K, Yoshinaga T, Date C, Fujii S, Hachiya N, Hirosawa I, Koda S, Kusaka Y, Murata K, Omae K, Shimbo S, Takenaka K, Takeshita T, Todoriki H, Wada Y, Watanabe T, Ikeda M (2007) Historical and geographical aspects of the increasing perfluorooctanoate and perfluorooctane sulfonate contamination in human serum in Japan. Chemosphere 66(2):293–301

    Article  PubMed  Google Scholar 

  • Kramer C, Kreisel G, Fahr K, Kassbohrer J, Schlosser D (2004) Degradation of 2-fluorophenol by the brown-rot fungus Gloeophyllum striatum: evidence for the involvement of extracellular Fenton chemistry. Appl Microbiol Biotechnol 64(3):387–395

    Article  CAS  PubMed  Google Scholar 

  • Lee DJ, Ho KL, Chen YY (2011) Degradation of cresols by phenol-acclimated aerobic granules. Appl Microbiol Biotechnol 89(1):209–215. doi:10.1007/s00253-010-2878-7

    Article  CAS  PubMed  Google Scholar 

  • Leigh MB, Prouzova P, Mackova M, Macek T, Nagle DP, Fletcher JS (2006) Polychlorinated biphenyl (PCB)-degrading bacteria associated with trees in a PCB-contaminated site. Appl Environ Microbiol 72(4):2331–2342. doi:10.1128/Aem.72.4.2331-2342.2006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lemal DM (2004) Perspective on fluorocarbon chemistry. J Org Chem 69(1):1–11

    Article  CAS  PubMed  Google Scholar 

  • Li L, Goel R (2012) Biodegradation of naphthalene, benzene, toluene, ethyl benzene, and xylene in batch and membrane bioreactors. Environ Eng Sci 29(1):42–51. doi:10.1089/ees.2010.0362

    Article  Google Scholar 

  • Li AJ, Yang SF, Li XY, Gu JD (2008) Microbial population dynamics during aerobic sludge granulation at different organic loading rates. Water Res 42(13):3552–3560. doi:10.1016/j.watres.2008.05.005

    Article  CAS  PubMed  Google Scholar 

  • Liang C (2005) Production and development of fluorine-contained intermediates. Fine Spec 13(21):5–9 (in Chinese)

    CAS  Google Scholar 

  • Murphy CD (2007) Fluorophenol oxidation by a fungal chloroperoxidase. Biotechnol Lett 29(1):45–49. doi:10.1007/s10529-006-9207-3

    Article  CAS  PubMed  Google Scholar 

  • Murphy MB, Loi EIH, Kwok KY, Lam PKS (2012) Ecotoxicology of organofluorous compounds. Fluorous Chem 308:339–363

    Article  CAS  Google Scholar 

  • Ohtsubo Y, Ishibashi Y, Naganawa H, Hirokawa S, Atobe S, Nagata Y, Tsuda M (2012) Conjugal transfer of polychlorinated biphenyl/biphenyl degradation genes in Acidovorax sp strain KKS102, which are located on an integrative and conjugative element. J Bacteriol 194(16):4237–4248. doi:10.1128/Jb.00352-12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Osuna MB, Sipma J, Emanuelsson MAE, Carvalho MF, Castro PML (2008) Biodegradation of 2-fluorobenzoate and dichloromethane under simultaneous and sequential alternating pollutant feeding. Water Res 42(14):3857–3869. doi:10.1016/j.watres.2008.05.011

    Article  CAS  PubMed  Google Scholar 

  • Paul AG, Jones KC, Sweetman AJ (2009) A first global production, emission, and environmental inventory for perfluorooctane sulfonate. Environ Sci Technol 43(2):386–392

    Article  CAS  PubMed  Google Scholar 

  • Qu Fuping ZX, Miao He, Xiasheng Gu (1997) Study on the biodegradability and cometabolism of chlorobenzenes. China Environ Sci 17(2):142–145 (in Chinese)

    Google Scholar 

  • Sandford G (2007) Elemental fluorine in organic chemistry (1997–2006). J Fluorine Chem 128(2):90–104

    Article  CAS  Google Scholar 

  • Sharma DK, Tiwari M, Arora M, Behera BK (1997) Microbial transformation and biodegradation of Calotropis procera latex towards obtaining value added chemicals, pharmaceuticals and fuels. Pet Sci Technol 15(1–2):137–169. doi:10.1080/10916469708949648

    Article  CAS  Google Scholar 

  • She ZL, Gao MC, Jin CJ, Chen YY, Yu JW (2005) Toxicity and biodegradation of 2,4-dinitrophenol and 3-nitrophenol in anaerobic systems. Process Biochem 40(9):3017–3024. doi:10.1016/j.procbio.2005.02.007

    Article  CAS  Google Scholar 

  • Shih KM, Ma RW (2010) Perfluorochemicals in wastewater treatment plants and sediments in Hong Kong. Environ Pollut 158(5):1354–1362

    Article  PubMed  Google Scholar 

  • Song B, Kerkhof LJ, Haggblom MM (2002) Characterization of bacterial consortia capable of degrading 4-chlorobenzoate and 4-bromobenzoate under denitrifying conditions. FEMS Microbiol Lett 213(2):183–188. doi:10.1111/J.1574-6968.2002.Tb11303.X

    Article  CAS  PubMed  Google Scholar 

  • Song EX, Wang MZ, Shen DS (2014) Isolation, identification and characterization of a novel Ralstonia sp FD-1, capable of degrading 4-fluoroaniline. Biodegradation 25(1):85–94. doi:10.1007/s10532-013-9642-5

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Timofei S, Kurunczi L, Dietze U, Schuurmann G (2001) Correlation of aerobic biodegradability of sulfonated azo dyes with the chemical structure. Chemosphere 45(1):1–9. doi:10.1016/S0045-6535(01)00074-1

    Article  CAS  PubMed  Google Scholar 

  • Travkin VM, Solyanikova IP, Rietjens IMCM, Vervoort J, van Berkel WJH, Golovleva LA (2003) Degradation of 3,4-dichloro- and 3,4-difluoroaniline by Pseudomonas fluorescens 26-K. J Environ Sci Health B 38(2):121–132. doi:10.1081/Pfc-120018443

    Article  PubMed  Google Scholar 

  • Wang Jusi ZL, Kuang Xin, Jia Zhiping (1993) Biodegrability of benzene hydrocarbons under aerobic condition. Environment Chemistry 12(5)

  • Wang MZ, Xu JJ, Wang JH, Wang S, Feng HJ, Shentu JL, Shen DS (2013) Differences between 4-fluoroaniline degradation and autoinducer release by Acinetobacter sp TW: implications for operating conditions in bacterial bioaugmentation. Environ Sci Pollut Res 20(9):6201–6209

    Article  CAS  Google Scholar 

  • Yamashita N, Li XM, Yeung LWY, Taniyasu S, Li M, Zhang HX, Liu D, Lam PKS, Dai JY (2008) Perfluorooctanesulfonate and related fluorochemicals in the Amur tiger (Panthera tigris altaica) from China. Environ Sci Technol 42(19):7078–7083

    Article  PubMed  Google Scholar 

  • Yu L (2007) Overview of some theoretical approaches for derivation of the Monod equation. Appl Microbiol Biotechnol 73(6):1241–1250. doi:10.1007/s00253-006-0717-7

    Article  Google Scholar 

  • Zeyer J, Wasserfallen A, Timmis KN (1985) Microbial mineralization of ring-subsituted anilines through an ortho-cleavage pathway. Appl Environ Microbiol 50(2):447–453

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang CJ, Zhou Q, Chen L, Wu ZC, Xu B (2007) Biodegradation of meta-fluorophenol by an acclimated activated sludge. J Hazard Mater 141(1):295–300. doi:10.1016/j.jhazmat.2006.07.002

    Article  CAS  Google Scholar 

  • Zhang LL, He D, Chen JM, Liu Y (2010a) Biodegradation of 2-chloroaniline, 3-chloroaniline, and 4-chloroaniline by a novel strain Delftia tsuruhatensis H1. J Hazard Mater 179(1–3):875–882. doi:10.1016/j.jhazmat.2010.03.086

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Ren HF, Liu Y, Zhu BL, Liu ZP (2010b) A novel degradation pathway of chloroaniline in Diaphorobacter sp PCA039 entails initial hydroxylation. World J Microbiol Biotechnol 26(4):665–673. doi:10.1007/s11274-009-0221-1

    Article  CAS  Google Scholar 

  • Zhang S, Li A, Cui D, Yang JX, Ma F (2011) Performance of enhanced biological SBR process for aniline treatment by mycelial pellet as biomass carrier. Bioresour Technol 102(6):4360–4365. doi:10.1016/j.biortech.2010.12.079

    Article  CAS  PubMed  Google Scholar 

  • Zhao ZQ, Xu LL, Li WB, Wang MZ, Shen XL, Ma GS, Shen DS (2012) Toxicity of three F-substituent aromatics in anaerobic systems. J Chem Technol Biotechnol 87(10):1489–1496. doi:10.1002/Jctb.3774

    Article  CAS  Google Scholar 

  • Zhu LA, Yu YW, Xu XY, Tian ZJ, Luo WG (2011) High-rate biodegradation and metabolic pathways of 4-chloroaniline by aerobic granules. Process Biochem 46(4):894–899. doi:10.1016/j.procbio.2010.12.013

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Science and Technology Plan Projects of Hangzhou, Zhejiang province with Grant No. 2013C33004, Project of education department, zhejiang provice with Grant No.Y201430857, and Science and Technology Plan Projects of Quzhou University with Grant NO. KY1301.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Sheng Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, ZQ., Tian, BH., Zhang, X. et al. Aerobic degradation study of three fluoroanilines and microbial community analysis: the effects of increased fluorine substitution. Biodegradation 26, 1–14 (2015). https://doi.org/10.1007/s10532-014-9704-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-014-9704-3

Keywords

Navigation