Skip to main content
Log in

Phanerochaete chrysosporium inoculation shapes the indigenous fungal communities during agricultural waste composting

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Inoculation with exogenous white-rot fungi has been proven to be an efficient method to promote lignocellulose biodegradation during agricultural waste composting. Indigenous fungal communities, the most important organisms responsible for mineralization and decomposition of lignocellulosic materials in composts, can be affected by sample properties and other biotic factors. This research was conducted to determine the effects of the Phanerochaete chrysosporium inoculation on the indigenous fungal communities during agricultural waste composting. Fungal communities in samples with different inoculation regimes were investigated by sequencing and quantitative PCR. Results showed that P. chrysosporium inoculants produced significant negative effects on the indigenous fungal community abundance during the thermophilic stage. Samples inoculated during Phase II contained higher proportion of Acremonium chrysogenum and Galactomyces geotrichum, while those non-inoculated samples were dominated by Coprinopsis cinerea and Scytalidium thermophilum. Moreover, the indigenous fungal community abundance was significantly correlated with the C/N ratio, water soluble carbon and moisture content (P < 0.05). Redundancy analysis indicated that the most variation in distribution of indigenous fungal community structure was statistically explained by nitrate, C/N ratio, and moisture content, factors which solely explained 29.6 % (F = 30.316, P = 0.002), 25.6 % (F = 26.191, P = 0.002) and 10.0 % (F = 10.249, P = 0.002) of the variation in the indigenous fungal community structure, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ali M, Bhatia A, Kazmi AA, Ahmed N (2012) Characterization of high rate composting of vegetable market waste using Fourier transform-infrared (FT-IR) and thermal studies in three different seasons. Biodegradation 23:231–242

    Article  CAS  PubMed  Google Scholar 

  • Anastasi A, Varese GC, Marchisio VF (2005) Isolation and identification of fungal communities in compost and vermicompost. Mycologia 97:33–44

    Article  PubMed  Google Scholar 

  • Chen Y, Zhou W, Li Y, Zhang J, Zeng G, Huang A, Huang J (2014) Nitrite reductase genes as functional markers to investigate diversity of denitrifying bacteria during agricultural waste composting. Appl Microbiol Biotechnol. doi:10.1007/s00253-014-5514-0

    PubMed Central  Google Scholar 

  • Eiland F, Klamer M, Lind AM, Leth M, Bååth E (2001) Influence of initial C/N ratio on chemical and microbial composition during long term composting of straw. Microb Ecol 41:272–280

    CAS  PubMed  Google Scholar 

  • Hansgate AM, Schloss PD, Hay AG, Walker LP (2005) Molecular characterization of fungal community dynamics in the initial stages of composting. FEMS Microbiol Ecol 51:209–214

    Article  CAS  PubMed  Google Scholar 

  • Huang GF, Wong JWC, Wu QT, Nagar BB (2004) Effect of C/N on composting of pig manure with sawdust. Waste Manag 24:805–813

    Article  CAS  PubMed  Google Scholar 

  • Huang DL, Zeng GM, Feng CL, Hu S, Jiang XY, Tang L, Su FF, Zhang Y, Zeng W, Liu HL (2008) Degradation of lead-contaminated lignocellulosic waste by Phanerochaete chrysosporium and the reduction of lead toxicity. Environ Sci Technol 42:4946–4951

    Article  CAS  PubMed  Google Scholar 

  • Huang DL, Zeng GM, Feng CL, Hu S, Zhao MH, Lai C, Zhang Y, Jiang XY, Liu HL (2010) Mycelial growth and solid-state fermentation of lignocellulosic waste by white-rot fungus Phanerochaete chrysosporium under lead stress. Chemosphere 81:1091–1097

    Article  CAS  PubMed  Google Scholar 

  • Ishii K, Takii S (2003) Comparison of microbial communities in four different composting processes as evaluated by denaturing gradient gel electrophoresis analysis. J Appl Microbiol 95:109–119

    Article  CAS  PubMed  Google Scholar 

  • Könneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437:543–546

    Article  PubMed  Google Scholar 

  • Lepš J, Šmilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, Cambridge, pp 43–75

    Google Scholar 

  • Li N, Zeng G, Huang D, Hu S, Feng C, Zhao M, Lai C, Huang C, Wei Z, Xie G (2011) Oxalate production at different initial Pb2+ concentrations and the influence of oxalate during solid-state fermentation of straw with Phanerochaete chrysosporium. Bioresour Technol 102:8137–8142

    Article  CAS  PubMed  Google Scholar 

  • Liang C, Das KC, McClendon RW (2003) The influence of temperature and moisture contents regimes on the aerobic microbial activity of a biosolids composting blend. Bioresour Technol 86:131–137

    Article  CAS  PubMed  Google Scholar 

  • Lu L, Zeng G, Fan C, Zhang J, Chen A, Chen M, Jiang M, Yuan Y, Wu H, Lai M, He Y (2014) Diversity of two-domain laccase-like multicopper oxidase genes in Streptomyces spp.: identification of genes potentially involved in extracellular activities and lignocellulose degradation during composting of agricultural waste. Appl Environ Microbiol. doi:10.1128/AEM.00223-14

    Google Scholar 

  • Maeda K, Morioka R, Osada T (2009) Effect of covering composting piles with mature compost on ammonia emission and microbial community structure of composting process. J Environ Qual 38:598–606

    Article  CAS  PubMed  Google Scholar 

  • Maeda K, Toyoda S, Shimojima R, Osada T, Hanajima D, Morioka R, Yoshida N (2010) Source of nitrous oxide emissions during the cow manure composting process as revealed by isotopomer analysis of and amoA abundance in betaproteobacterial ammonia-oxidizing bacteria. Appl Environ Microbiol 76:1555–1562

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mikesková H, Novotný Č, Svobodová K (2012) Interspecific interactions in mixed microbial cultures in a biodegradation perspective. Appl Microbiol Biotechnol 95:861–870

    Article  PubMed  Google Scholar 

  • Mouchacca J (1997) Thermophilic fungi: biodiversity and taxonomic status. Cryptogam Mycol 18:19–69

    Google Scholar 

  • Prévost-Bouré NC, Christen R, Dequiedt S, Mougel C, Lelièvre M, Jolivet C, Shahbazkia HR, Guillou L, Arrouays D, Ranjard L (2011) Validation and application of a PCR primer set to quantify fungal communities in the soil environment by real-time quantitative PCR. PLoS ONE 6:e24166

    Article  Google Scholar 

  • Prosser JI, Nicol GW (2008) Relative contributions of archaea and bacteria to aerobic ammonia oxidation in the environment. Environ Microbiol 10:2931–2941

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Monedero MA, Serramiá N, Civantos CG, Fernández-Hernández A, Roig A (2010) Greenhouse gas emissions during composting of two-phase olive mill wastes with different agroindustrial by-products. Chemosphere 81:18–25

    Article  PubMed  Google Scholar 

  • Taccari M, Stringini M, Comitini F, Ciani M (2009) Effect of Phanerochaete chrysosporium inoculation during maturation of co-composted agricultural wastes mixed with olive mill wastewater. Waste Manag 29:1615–1621

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tang JC, Shibata A, Zhou Q, Katayama A (2007) Effect of temperature on reaction rate and microbial community in composting of cattle manure with rice straw. J Biosci Bioeng 104:321–328

    Article  CAS  PubMed  Google Scholar 

  • Tuomela M, Vikman M, Hatakka A, Itävaara M (2000) Biodegradation of lignin in a compost environment: a review. Bioresour Technol 72:169–183

    Article  CAS  Google Scholar 

  • Vargas-García MC, Suárez-Estrella FF, López MJ, Joaquín M (2007) Effect of inoculation in composting process: modifications in lignocellulosic fraction. Waste Manag 27:1099–1107

    Article  PubMed  Google Scholar 

  • Wang H, Fan B, Hu Q, Yin Z (2011) Effect of inoculation with Penicillium expansum on the microbial community and maturity of compost. Bioresour Technol 102:11189–11193

    Article  CAS  PubMed  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfrand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322

    Google Scholar 

  • Xie K, Jia X, Xu P, Huang X, Gu W, Zhang F, Yang S, Tang S (2012) Improved composting of poultry feces via supplementation with ammonia oxidizing archaea. Bioresour Technol 102:70–77

    Article  Google Scholar 

  • Yamamoto N, Otawa K, Nakai Y (2010) Diversity and abundance of ammonia-oxidizing bacteria and ammonia-oxidizing archaea during cattle manure composting. Microb Ecol 60:807–815

    Article  CAS  PubMed  Google Scholar 

  • Yu H, Zeng G, Huang H, Xi X, Wang R, Huang D, Huang G, Li J (2007) Microbial community succession and lignocellulose degradation during agricultural waste composting. Biodegradation 18:793–802

    Article  CAS  PubMed  Google Scholar 

  • Yu M, Zeng G, Chen Y, Yu H, Huang D, Tang L (2009) Influence of Phanerochaete chrysosporium on microbial communities and lignocellulose degradation during solid-state fermentation of rice straw. Process Biochem 44:17–22

    Article  CAS  Google Scholar 

  • Yu Z, Zeng GM, Chen YN, Zhang JC, Yu Y, Li H, Liu ZF, Tang L (2011) Effects of inoculation with Phanerochaete chrysosporium on remediation of pentachlorophenol-contaminated soil waste by composting. Process Biochem 46:1285–1291

    Article  CAS  Google Scholar 

  • Zeng GM, Huang DL, Huang GH, Hu TJ, Jiang XY, Feng CL, Chen YN, Tang L, Liu HL (2007) Composting of lead-contaminated solid waste with inocula of white-rot fungus. Bioresour Technol 98:320–326

    Article  CAS  PubMed  Google Scholar 

  • Zeng GM, Huang HL, Huang DL, Yuan XZ, Jiang RQ, Yu M, Yu HY, Zhang JC, Wang RY, Liu XL (2009) Effect of inoculating white-rot fungus during different phases on the compost maturity of agricultural wastes. Process Biochem 44:396–400

    Article  CAS  Google Scholar 

  • Zeng G, Yu M, Chen Y, Huang D, Zhang J, Huang H, Jiang R, Yu Z (2010) Effects of inoculation with Phanerochaete chrysosporium at various time points on enzyme activities during agricultural waste composting. Bioresour Technol 101:222–227

    Article  CAS  PubMed  Google Scholar 

  • Zeng G, Zhang J, Chen Y, Yu Z, Yu M, Li H, Liu Z, Chen M, Lu L, Hu C (2011) Relative contributions of archaea and bacteria to microbial ammonia oxidation differ under different conditions during agricultural waste composting. Bioresour Technol 102:9026–9032

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Zeng G, Chen Y, Yu M, Yu Z, Li H, Yu Y, Huang H (2011) Effects of physico-chemical parameters on the bacterial and fungal communities during agricultural waste composting. Bioresour Technol 102:2950–2956

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Zeng G, Chen Y, Yu M, Huang H, Fan C, Zhu Y, Li H, Liu Z, Chen M (2013) Impact of Phanerochaete chrysosporium inoculation on indigenous bacterial communities during agricultural waste composting. Appl Microbiol Biotechnol 97:3159–3169

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors sincerely thank Editors and anonymous reviewers for suggestions on improving the paper. This word was jointly supported by the National Natural Science Foundation of China (51378190, 51039001, 50808072, 51108423, 51108178, 51009063), the Natural Science Foundation of Zhejiang Province (Y5100234), the Research Fund for the Doctoral Program of Higher Education of China (20100161110012), the Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling Open Fund (SWTR-2012-07), Shanghai Tongji Gao Tingyao Environmental Science and Technology Development Foundation (STGEF), and the Environmental Science Foundation supported by Professor Renbin Yang of Hunan Agricultural University (14YB14).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guangming Zeng or Yaoning Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Zeng, G., Chen, Y. et al. Phanerochaete chrysosporium inoculation shapes the indigenous fungal communities during agricultural waste composting. Biodegradation 25, 669–680 (2014). https://doi.org/10.1007/s10532-014-9690-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-014-9690-5

Keywords

Navigation