Skip to main content
Log in

Role of Thiobacillus thioparus in the biodegradation of carbon disulfide in a biofilter packed with a recycled organic pelletized material

  • Original Article
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

This study reports the biodegradation of carbon disulfide (CS2) in air biofilters packed with a pelletized mixture of composted manure and sawdust. Experiments were carried out in two lab-scale (1.2 L) biofiltration units. Biofilter B was seeded with activated sludge enriched previously on CS2-degrading biomass under batch conditions, while biofilter A was left as a negative inoculation control. This inoculum was characterized by an acidic pH and sulfate accumulation, and contained Achromobacter xylosoxidans as the main putative CS2 biodegrading bacterium. Biofilter operation start-up was unsuccessfully attempted under xerophilic conditions and significant CS2 elimination was only achieved in biofilter A upon the implementation of an intermittent irrigation regime. Sustained removal efficiencies of 90–100 % at an inlet load of up to 12 g CS2 m−3 h−1 were reached. The CS2 removal in this biofilter was linked to the presence of the chemolithoautotrophic bacterium Thiobacillus thioparus, known among the relatively small number of species with a reported capacity of growing on CS2 as the sole energy source. DGGE molecular profiles confirmed that this microbe had become dominant in biofilter A while it was not detected in samples from biofilter B. Conventional biofilters packed with inexpensive organic materials are suited for the treatment of low-strength CS2 polluted gases (IL <12 g CS2 m−3 h−1), provided that the development of the adequate microorganisms is favored, either upon enrichment or by inoculation. The importance of applying culture-independent techniques for microbial community analysis as a diagnostic tool in the biofiltration of recalcitrant compounds has been highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bagherpour MB, Nikazar M, Welander U, Bonakdarpour B, Sanati M (2005) Effects of irrigation and water content of packings on alpha-pinene vapours biofiltration performance. Biochem Eng J 24:185–193

    Article  CAS  Google Scholar 

  • Barona A, Elías A, Arias R, Cano I, González R (2004) Biofilter response to gradual and sudden variations in operating conditions. Biochem Eng J 22:25–31

    Article  CAS  Google Scholar 

  • Berzaczy L, Niedermayer E, Kloimstein L, Windsperger A (1988) Biological exhaust gas purification in the rayon fiber manufacture. Chem Biochem Eng Q 2:201–204

    CAS  Google Scholar 

  • Caspi R, Altman T, Dreher K, Fulcher CA, Subhraveti P, Keseler IM, Kothari A, Krummenacker M, Latendresse M, Mueller LA, Ong Q, Paley S, Pujar A, Shearer AG, Travers M, Weerasinghe D, Zhang P, Karp PD (2012) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 40:D742–D753

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clermont D, Harmant C, Bizet C (2001) Identification of strains of Alcaligenes and Agrobacterium by a polyphasic approach. J Clin Microbiol 39:3104–3109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • DGMA (2008) Resolución para el otorgamiento de Autorización Ambiental Integrada al conjunto de instalaciones que conforman el proyecto: Instalación de producción de viscosa, con una capacidad de producción de 90 t/día de fribrana y 25 t/día de sulfato sódico anhidro, ubicada en el T.M. de Torrelavega. In: Mascarós JG-O, (ed) Boletín Oficial de Cantabria, Santander, pp 143

  • Elías A, Barona A, Ríos FJ, Arreguy A, Munguira M, Peñas J, Sanz JL (2000) Application of biofiltration to the degradation of hydrogen sulfide in gas effluents. Biodegradation 11:423–427

    Article  PubMed  Google Scholar 

  • Elías A, Barona A, Gallastegi G, Rojo N, Gurtubay L, Ibarra-Berastegi G (2010) Preliminary acclimation strategies for successful startup in conventional biofilters. J Air Waste Manag Assoc 60:959–967

    Article  PubMed  Google Scholar 

  • EPA US (1990) Reference guide to odor thresholds for hazardous air pollutants listed in the Clean Air Act Amendments of 1990. US Environmental Protection Agency, Washington, DC, p 89

    Google Scholar 

  • European Comission (2007a) Reference document on best available techniques for the manufacture of large volume inorganic chemicals—solids and others industry. Integrated Pollution Prevention and Control (IPPC)

  • European Commission (2007b) Reference document on best available techniques in the production of polymers. Integrated Pollution Prevention and Control (IPPC)

  • Falteisek L, Čepička I (2012) Microbiology of diverse acidic and non-acidic microhabitats within a sulfidic ore mine. Extremophiles 16:911–922

    Article  CAS  PubMed  Google Scholar 

  • Hartel PG, Haines BL (1992) Effects of potential plant CS2 emissions on bacterial growth in the rhizosphere. Soil Biol Biochem 24:219–224

    Article  CAS  Google Scholar 

  • Hartikainen T, Martikainen PJ, Olkkonen M, Ruuskanen J (2002) Peat biofilters in long-term experiments for removing odorous sulphur compounds. Water Air Soil Pollut 133:335–348

    Article  CAS  Google Scholar 

  • Hugler W, Acosta C, Revah S (1999) Biological removal of carbon disulfide from waste air streams. Environ Prog 18:173–177

    Article  CAS  Google Scholar 

  • Jiménez N, Viñas M, Bayona J, Albaiges J, Solanas A (2007) The prestige oil spill: bacterial community dynamics during a field biostimulation assay. Appl Microbiol Biotechnol 77:935–945

    Article  PubMed  Google Scholar 

  • Jones KD, Martínez A, Maroo K, Deshpande S, Boswell J (2004) Kinetic evaluation of H2S and NH3 biofiltration for two media used for wastewater lift station emissions. J Air Waste Manag Assoc 54:24–35

    Article  CAS  PubMed  Google Scholar 

  • Kennes C, Rene ER, Veiga MC (2009) Bioprocesses for air pollution control. J Chem Technol Biotechnol 84:1419–1436

    Google Scholar 

  • Kraakman NJR (2003) Robustness of a full-scale biological system treating industrial CS2 emissions. Environ Prog 22:79–85

    Article  CAS  Google Scholar 

  • Kraakman NJR, de Waal KJA (2006) Treatment of carbon disulfide from industrial waste gas emissions: pollutant converted into reusable sulfuric acid. In: Lens P, Kennes C, Le Cloirec P, Deshusses MA (eds) Waste gas treatment for resource recovery. IWA Publishing, London, pp 433–449

    Google Scholar 

  • Kraakman NJR, Pol A, Smeulders MJ, Jetten MSM, Op den Camp HJM (2012) Extremely acidophilic sulfur-oxidizing bacteria applied in biotechnological processes for gas purification. J Environ Sci Health A Tox Hazard Subst Environ Eng 47:964–969

    Article  CAS  PubMed  Google Scholar 

  • Lee CS, Kim KK, Aslam Z, Lee S-T (2007) Rhodanobacter thiooxydans sp. nov., isolated from a biofilm on sulfur particles used in an autotrophic denitrification process. Int J Syst Evol Microbiol 57:1775–1779

    Article  PubMed  Google Scholar 

  • NIOSH (National Institute for Occupational Safety and Health) (2009) NIOSH Pocket guide to chemical hazards. Carbon disulfide. http://www.cdc.gov/niosh/npg/npgd0104.html Accessed 06 November 2013

  • Plas C, Wimmer K, Holubar P, Mattanovich D, Danner H, Jelinek E, Harant H, Braun R (1993) Degradation of carbon disulphide by a Thiobacillus isolate. Appl Microbiol Biotechnol 38:820–823

    Article  CAS  Google Scholar 

  • Pohanish R (2012) Carbon disulfide. Sittig’s handbook of toxic and hazardous chemicals and carcinogens. Elsevier, Oxford, pp 568–571

    Google Scholar 

  • Prenafeta-Boldú FX, Guivernau M, Gallastegui G, Viñas M, de Hoog GS, Elías A (2012a) Fungal/bacterial interactions during the biodegradation of TEX hydrocarbons (toluene, ethylbenzene and p-xylene) in gas biofilters operated under xerophilic conditions. FEMS Microbiol Ecol 80:722–734

    Article  PubMed  Google Scholar 

  • Prenafeta-Boldú FX, Ortega O, Arimany M, Canalias F (2012b) Assessment of process limiting factors during the biofiltration of odorous VOCs in a full-scale composting plant. Comput Sci Util 20:73–78

    Google Scholar 

  • Revah S, Hinojosa A, Morales V (1994) Air biodesulfurization in process plants. Bioremediation: the Tokyo 1994 Workshop. Organisation for Economic Co-operation and Development (OCDE), Tokyo

  • Revah S, Acosta M, Hugler W, Trinidad R, Avila C, Estrada I, Hinojosa A (1995) Air biodesulfurization from viscose plants: carbon disulfide elimination. In: Proceedings of the conference on biofiltration (an Air Pollution Control Technology), University of South California, LA, pp 181–187

  • Rojo N, Gallastegi G, Barona A, Gurtubay L, Ibarra-Berastegi G, Elías A (2010) Biotechnology as an alternative for carbon disulfide treatment in air pollution control. Environ Rev 18:321–332

    Article  CAS  Google Scholar 

  • Rojo N, Muñoz R, Gallastegui G, Barona A, Gurtubay L, Prenafeta-Boldú FX, Elías A (2012) Carbon disulfide biofiltration: influence of the accumulation of biodegradation products on biomass development. J Chem Technol Biotechnol 87:764–771

    Article  CAS  Google Scholar 

  • Smet E, Lens P, Van Langenhove H (1998) Treatment of waste gases contaminated with odorous sulfur compounds. Crit Rev Environ Sci Technol 28:89–117

    Article  CAS  Google Scholar 

  • Smeulders MJ, Pol A, Zandvoort MH, Jetten MSM, Op den Camp HJM (2013) Diversity and ecophysiology of new isolates of extremely acidophilic CS2-converting Acidithiobacillus strains. Appl Environ Microbiol 79:6784–6794

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smith NA, Kelly DP (1988) Oxidation of carbon disulphide as the sole source of energy for the autotrophic growth of Thiobacillus thioparus strain TK-m. J Gen Microbiol 134:3041–3048

    CAS  Google Scholar 

  • van Groenestijn JW, Hesselink PGM (1993) Biotechniques for air pollution control. Biodegradation 4:283–301

    Article  Google Scholar 

  • van Groenestijn JW, Kraakman NJR (2005) Recent developments in biological waste gas purification in Europe. Chem Eng J 113:85–91

    Article  Google Scholar 

  • Vlasceanu L, Popa R, Kinkle BK (1997) Characterization of Thiobacillus thioparus LV43 and its distribution in a chemoautotrophically based groundwater ecosystem. Appl Environ Microbiol 63:3123–3127

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yabuuchi E, Yano I (1981) Achromobacter gen. nov. and Achromobacter xylosoxidans (ex Yabuuchi and Ohyama 1971) nom. rev. Int J Syst Bacteriol 31:477–478

    Article  Google Scholar 

  • Yamasaki M, Matsushita Y, Namura M, Nyunoya H, Katayama Y (2002) Genetic and immunochemical characterization of thiocyanate-degrading bacteria in lake water. Appl Environ Microbiol 68:942–946

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang Y, Allen E (1994) Biofiltration control of hydrogen sulfide 1. Design and operational parameters. J Air Waste Manage Assoc 44:863–868

    Article  CAS  Google Scholar 

  • Yu Z, Morrison M (2004) Comparisons of different hypervariable regions of RSS genes for use in fingerprinting of microbial communities by PCR-denaturing gradient gel electrophoresis. Appl Environ Microbiol 70:4800–4806

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This research has been carried out with the financial support from the Spanish Ministry of Economy and Competitiveness (MICINN CTM2012-35565). Technical and human support provided by SGIker for SEM analysis is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Elías.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prenafeta-Boldú, F.X., Rojo, N., Gallastegui, G. et al. Role of Thiobacillus thioparus in the biodegradation of carbon disulfide in a biofilter packed with a recycled organic pelletized material. Biodegradation 25, 557–568 (2014). https://doi.org/10.1007/s10532-014-9681-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-014-9681-6

Keywords

Navigation