Skip to main content
Log in

Study the biocatalyzing effect and mechanism of cellulose acetate immobilized redox mediators technology (CE-RM) on nitrite denitrification

  • Original Article
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

The biocatalyzing effect of a novel cellulose acetate immobilized redox mediators technology (CE-RM) on nitrite denitrification process was studied with anthraquinone, 1,8-dichloroanthraquinone, 1,5-dichloroanthraquinone and 1,4,5,8-tetrachloroanthraquinone. The results showed that the immobilized 1,4,5,8-tetrachloroanthraquinone presented the best biocatalyzed effect which increased nitrite denitrification rate to 2.3-fold with 12 mmol/L 1,4,5,8-tetrachloroanthraquinone. The unequal biocatalyzing effect was due to the quantity and position of –Cl substituent in anthraquinone-structure. Moreover, the nitrite denitrification rate was increased with the oxidation reduction potential (ORP) values becoming more negative during the biocatalyzing process. The stabilized ORP value with 12 mmol/L immobilized 1,4,5,8-tetrachloroanthraquinone were 81 mV lower than the control. At the same time, the more OH was produced with the higher nitrite removal rate achieved in the nitrite denitrification process. In addition, a positive linear correlation was found between the nitrite removal reaction constants k [gNO2 –N/(gVSS d)] and immobilized 1,4,5,8-tetrachloroanthraquinone concentration (C 1,4,5,8-tetrachloroanthraquinone), which was k = 1.8443 C 1,4,5,8-tetrachloroanthraquinone + 33.75(R 2 = 0.9411). The initial nitrite concentration of 179 mgNO2 –N/L resulted in the maximum nitrite removal rate, which was 6.526[gNO2 –N/(gVSS d)]. These results show that the application of cellulose acetate immobilized redox mediators (CE-RM) can be valuable for increasing nitrite denitrification rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ORP:

Oxidation reduction potential

CE-RM:

Cellulose acetate immobilized redox mediators

OD:

Optical density

Q:

Quinones

QH2 :

Hydroquinone

References

  • Adav SS, Lee DJ, Lai JY (2010) Enhanced biological denitrification of high concentration of nitrite with supplementary carbon source. Appl Microbiol Biotechnol 85:773–778

    Article  CAS  PubMed  Google Scholar 

  • Ahn YH (2006) Sustainable nitrogen elimination biotechnologies: a review. Process Biochem 41:1709–1721

    Article  CAS  Google Scholar 

  • Aranda-Tamaura C, Estrada-Alvarado MI, Texier AC, Cuervo F, Gomez J, Cervantes FJ (2007) Effects of different quinoid redox mediators on the removal of sulphide and nitrate via denitrification. Chemosphere 69:1722–1727

    Article  CAS  PubMed  Google Scholar 

  • Claros J, Serralta J, Seco A, Ferrer J, Aguado D (2012) Real-time control strategy for nitrogen removal via nitrite in a SHARON reactor using pH and ORP sensors. Process Biochem 47:1510–1515

    Article  CAS  Google Scholar 

  • Coates JD, Kimberly A, Chakraborty CR, O’Connor SM, Achenbach LA (2002) Diversity and ubiquity of bacteria capable of utilizing humic substances as electron donors for anaerobic respiration. Appl Environ Microbiol 68:2445–2452

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dos Santos AB, Traverse J, Cervantes FJ, Van Lier JB (2005) Enhancing the electron transfer capacity and subsequent color removal in bioreactors by applying thermophilic anaerobic treatment and redox mediators. Biotechnol Bioeng 89:42–52

    Article  PubMed  Google Scholar 

  • Gali A, Dosta J, Van Loosdrecht MCM, Mata-Alvarez J (2007) Two ways to achieve an anammox influent from real reject water treatment at lab-scale: partial SBR nitrification and SHARON process. Process Biochem 42:715–720

    Article  CAS  Google Scholar 

  • Gao D, Peng Y, Li B, Liang H (2009) Shortcut nitrification–denitrification by real-time control strategies. Bioresour Technol 100:2298–2300

    Article  CAS  PubMed  Google Scholar 

  • García-Garizábal I, Causapé J, Abrahao R (2012) Nitrate contamination and its relationship with flood irrigation management. J Hydrol 442–443:15–22

    Article  Google Scholar 

  • Ge S, Peng Y, Wang S, Lu C, Cao X, Zhu Y (2012) Nitrite accumulation under constant temperature in anoxic denitrification process: the effects of carbon sources and COD/NO3–N. Bioresour Technol 114:137–143

    Article  CAS  PubMed  Google Scholar 

  • Guerrero-Barajas C, Field JA (2005) Riboflavin- and cobalamin-mediated biodegradation of chloroform in a methanogenic consortium. Biotechnol Bioeng 89:539–550

    Article  CAS  PubMed  Google Scholar 

  • Guo J, Zhou J, Wang D, Tian C, Wang P, Salah Uddin M, Yu H (2007) Biocatalyst effects of immobilized anthraquinone on the anaerobic reduction of azo dyes by the salt-tolerant bacteria. Water Res 41:426–432

    Article  CAS  PubMed  Google Scholar 

  • Guo J, Kang L, Yang J, Wang X, Lian J, Li H, Guo Y, Wang Y (2010) Study on a novel non-dissolved redox mediator catalyzing biological denitrification (RMBDN) technology. Bioresour Technol 101:4238–4241

    Article  CAS  PubMed  Google Scholar 

  • Her JJ, Huang J (1995) Influences of carbon source and C/N ratio on nitrate/nitrite denitrification and carbon breakthrough. Bioresour Technol 54:45–51

    Article  CAS  Google Scholar 

  • Liu H, Qu J, Dai R, Ru J (2004) China Patent, 200410062266.5

  • Liu H, Qu J, Dai R, Ru J, Wang Z (2007) A biomimetic adsorbent for removal of trace level persistent organic pollutants from water. Environ Pollut 147:337–342

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Yang H, Wang J, Jin R, Zhou J, Lv H (2010) Enhanced chromate reduction by resting Escherichia coli cells in the presence of quinone redox mediators. Bioresour Technol 101:8127–8131

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Guo J, Qu J, Lian J, Jefferson W, Yang J, Li H (2012a) Catalyzing denitrification of Paracoccus versutus by immobilized 1,5-dichloroanthraquinone. Biodegradation 23:399–405

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Guo J, Qu J, Lian J, Guo Y, Jefferson W, Yang J (2012b) Biological catalyzed denitrification by a functional electropolymerization biocarrier modified by redox mediator. Bioresour Technol 107:144–150

    Article  CAS  PubMed  Google Scholar 

  • Lovley DR, Coates JD, Blunt-Harris EL, Phillips EJP, Woodward JC (1996) Humic substances as electron acceptors for microbial respiration. Nature 382:445–448

    Article  CAS  Google Scholar 

  • Nolan BT, Ruddy BC, Hitt KJ, Helsel DR (1997) Risk of nitrate in groundwaters of the United States—a national perspective. Environ Sci Technol 31:2229–2236

    Article  CAS  Google Scholar 

  • Nriagu JO (2011) Encyclopedia of environmental health. Stockholm

  • Okafor PN, Ogbonna UI (2003) Nitrate and nitrite contamination of water sources and fruit juices marketed in South-Eastern Nigeria. J Food Compos Anal 16:213–218

    Article  CAS  Google Scholar 

  • Philips S, Wyffels S, Sprengers R, Verstraete W (2002) Oxygen-limited autotrophic nitrification/denitrification by ammonia oxidisers enables upward motion towards more favourable conditions. Appl Microbiol Biotechnol 59:557–566

    Article  CAS  PubMed  Google Scholar 

  • Sun H, Yang Q, Peng Y, Shi X, Wang S, Zhang S (2009) Nitrite accumulation during the denitrification process in SBR for the treatment of pre-treated landfill leachate. Chin J Chem Eng 17:1027–1031

    Article  CAS  Google Scholar 

  • Uchimiya M, Stone AT (2009) Reversible redox chemistry of quinones: impact on biogeochemical cycles. Chemosphere 77:451–458

    Article  CAS  PubMed  Google Scholar 

  • Van der Zee FPF, Cervantes J (2009) Impact and application of electron shuttles on the redox (bio)transformation of contaminants: a review. Biotechnol Adv 27(3):256–277

    Article  PubMed  Google Scholar 

  • Wan C, Yang X, Lee D, Du M, Wan F, Chen C (2011) Aerobic denitrification by novel isolated strain using NO2–N as nitrogen source. Bioresour Technol 102:7244–7248

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Lu H, Chen G, Lau GN, Tsang WL, Van Loosdrecht MCM (2009) A novel sulfate reduction autotrophic denitrification nitrification integrated (SANI) process for saline wastewater treatment. Water Res 43:2363–2372

    Article  CAS  PubMed  Google Scholar 

  • Windey K, De Bo I, Verstraete W (2005) Oxygen-limited autotrophic nitrification–denitrification (OLAND) in a rotating biological contactor treating high-salinity wastewater. Water Res 39:4512–4520

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Zhou J, Zhang J, Yuan S (2009) An innovative membrane bioreactor and packed-bed biofilm reactor combined system for shortcut nitrification–denitrification. J Environ Sci China 21:568–574

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Supporting Program for Hundred Outstanding Innovation Talents in Hebei Universities (II) (BR2-211), Hebei Natural Science Foundation for Distinguished Young Scholars (Grant No. E2012208012) and Program for New Century Excellent Talents in University (Grant No. NCET-10-0127).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianbo Guo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1240 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Guo, J., Lian, J. et al. Study the biocatalyzing effect and mechanism of cellulose acetate immobilized redox mediators technology (CE-RM) on nitrite denitrification. Biodegradation 25, 395–404 (2014). https://doi.org/10.1007/s10532-013-9668-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-013-9668-8

Keywords

Navigation