Skip to main content
Log in

Rapid biodegradation and decolorization of Direct Orange 39 (Orange TGLL) by an isolated bacterium Pseudomonas aeruginosa strain BCH

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

A newly isolated novel bacterium from sediments contaminated with dyestuff was identified as Pseudomonas aeruginosa strain BCH by 16S rRNA gene sequence analysis. The bacterium was extraordinarily active and operative over a wide rage of temperature (10–60°C) and salinity (5–6%), for decolorization of Direct Orange 39 (Orange TGLL) at optimum pH 7. This strain was capable of decolorizing Direct Orange 39; 50 mg l−1 within 45 ± 5 min, with 93.06% decolorization, while maximally it could decolorize 1.5 g l−1 of dye within 48 h with 60% decolorization. Analytical studies as, UV–Vis spectroscopy, FTIR, HPLC were employed to confirm the biodegradation of dye and formation of new metabolites. Induction in the activities of lignin peroxidases, DCIP reductase as well as tyrosinase was observed, indicating the significant role of these enzymes in biodegradation of Direct Orange 39. Toxicity studies with Phaseolus mungo and Triticum aestivum revealed the non-toxic nature of degraded metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Afarani HRE (2008) Preparation of metal catalysts on granule glass for degradation of textile dyes as environmental contaminants. World Appl Sci J 3:738–741

    Google Scholar 

  • Ali S, Shultz JL, Haq I (2007) High performance microbiological transformation of l-tyrosine to l-dopa by Yarrowia lipolytica NRRL-143. BMC Biotechnol. doi:10.1186/1472-6750-7-50

  • Bhatt N, Patel KC, Keharia H, Madamwar D (2005) Decolorization of diazo dye Reactive Blue 172 by Pseudomonas aeruginosa. J Basic Microbiol 45:407–418

    Article  CAS  PubMed  Google Scholar 

  • Chang JS, Chou C, Lin YC, Lin PJ, Ho JY, Hu TL (2001) Kinetic characteristics of bacterial azo dye decolorization by Pseudomonas luteola. Water Res 35:2841–2850

    Article  CAS  PubMed  Google Scholar 

  • Chen KC, Huang WT, Wu JY, Houng JY (1999) Microbial decolorization of azo dyes by Proteus mirabilis. J Ind Microbiol Biotechnol 23:686–690

    Article  CAS  PubMed  Google Scholar 

  • Chen KC, Wu JY, Liou DJ, Hwang SCJ (2003) Decolorization of the textile dyes by newly isolated bacterial strains. J Biotechnol 101:57–68

    Article  CAS  PubMed  Google Scholar 

  • Davis RJ, Gainer JL, O’Neal G, Wu IW (1994) Photocatalytic decolorization of waste water dyes. Water Environ Res 66:50–53

    CAS  Google Scholar 

  • De Baere LA, Devocht M, Assche PV, Verstraete W (1984) Influence of high NaCl and NH4Cl salt levels on methanogenic associations. Water Res 18:543–548

    Article  Google Scholar 

  • Dhanve RS, Shedbalkar UU, Jadhav JP (2008) Biodegradation of diazo reactive dye navy blue HE2R (Reactive blue 172) by an isolated Exiguobacterium sp. RD3. Biotechnol Bioprocess Eng 13:53–60

    Article  CAS  Google Scholar 

  • Dhanve RS, Kalyani DC, Phugare SS, Jadhav JP (2009) Coordinate action of exiguobacterial oxidoreductive enzymes in biodegradation of reactive yellow 84A dye. Biodegradation 20:245–255

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Fu Y, Viraraghavan T (2002) Dye biosorption sites in Aspergillus niger. Bioresour Technol 82:139–145

    Article  CAS  PubMed  Google Scholar 

  • Hu TL (1994) Decolorization of reactive azo dyes by transformation 436 with Pseudomonas luteola. Bioresour Technol 49:47–51

    Article  CAS  Google Scholar 

  • Hu TL (1998) Degradation of Azo Dye RP2B by Pseudomonas luteola. Water Sci Technol 38:299–306

    CAS  Google Scholar 

  • Jadhav JP, Parshetti GK, Kalme SD, Govindwar SP (2007) Decolourization of azo dye methyl red by Saccharomyces cerevisiae MTCC 463. Chemosphere 68:394–400

    Article  CAS  PubMed  Google Scholar 

  • Johnson RF, Zenhausen A, Zollinger H (1978) In: Mark HF, Mcketta JJ, Othmer DF Jr, Standen A (eds) Krik-Othmer, 2nd edn. Encyclopedia of chemical technology, vol 2. Wiley, Hoboken, pp 868–910

  • Kalme SD, Parshetti GK, Jadhav SU, Govindwar SP (2006) Biodegradation of benzidine based dye Direct Blue-6 by Pseudomonas desmolyticum NCIM 2112. Bioresour Technol 98:1405–1410

    Article  PubMed  CAS  Google Scholar 

  • Kalyani DC, Patil PS, Jadhav JP, Govindwar SP (2008a) Biodegradation of reactive textile dye Red BLI by an isolated bacterium Pseudomonas sp. SUK1. Bioresour Technol 99:4635–4641

    Article  CAS  PubMed  Google Scholar 

  • Kalyani DC, Telke AA, Dhanve RS, Jadhav JP (2008b) Ecofriendly biodegradation and detoxification of Reactive Red 2 textile dye by newly isolated Pseudomonas sp. SUK1. J Hazard Mater 163:735–742

    Article  PubMed  CAS  Google Scholar 

  • Kapanen A, Itavaara M (2001) Ecotoxicity tests for compost applications. Ecotoxicol Environ Safety 49:1–16

    Article  CAS  PubMed  Google Scholar 

  • Kim SJ, Shoda M (1999) Purification and characterisation of a novel peroxidase from Geotrichum candidum. Dec. 1 involved in decolourisation of dyes. Appl Environ Microbiol 65:1029–1035

    CAS  PubMed  Google Scholar 

  • Liu GF, Zhou J, Wang JT, Song ZY, Qv YY (2006) Bacterial decolorization of azo dyes by Rhodopseudomonas palustris. World J Microbiol Biotechnol 22:1069–1074

    Article  CAS  Google Scholar 

  • Maguire RJ (1992) Occurrence and persistence of dyes in a Canadian river. Water Sci Technol 25:265–270

    CAS  Google Scholar 

  • Maximo C, Pessoa AMT, Costa-Ferreira M (2003) Biotransformation of industrial reactive azo dyes by Geotrichum sp. CCMI 1019. Enzyme Microb Technol 32:145–151

    Article  CAS  Google Scholar 

  • Panswad T, Anan C (1999) Specific oxygen, ammonia, and nitrate uptake rates of a biological nutrient removal process treating elevated salinity wastewater. Bioresour Technol 70:237–243

    Article  CAS  Google Scholar 

  • Paszczynski A, Pastri-Grisby M, Goszeeynski S, Crawford R, Crawford DL (1992) Mineralization of sulfonated azo dyes and sulfanilic acid by Phanerochaete chrysosporium and Streptomyces chromofuscus. Appl Environ Microbiol 58:3598–3604

    CAS  PubMed  Google Scholar 

  • Patil PS, Shedbalkar UU, Kalyani DC, Jadhav JP (2008) Biodegradation of Reactive Blue 59 by isolated bacterial consortium PMB11. J Ind Microbiol Biotechnol 35:1181–1190

    Article  CAS  PubMed  Google Scholar 

  • Raffi F, Hall JD, Cerniglia CE (1997) Mutagenicity of azo dyes used in foods, drugs and cosmetics before and after reduction by Clostridium species from the human intestinal tract. Food Chem Toxicol 35:897–901

    Article  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Salah-Uddin M, Zhou J, Qu Y, Guo J, Wang P, Zhao LH (2007) Biodecolorization of azo dye acid red B under high salinity condition. Bull Environ Contam Toxicol 79:440–444

    Article  CAS  Google Scholar 

  • Salokhe MD, Govindwar SP (1999) Effect of carbon source on the biotransformation enzymes in Serratia marcescens. World J Microbiol Biotechnol 15:229–232

    Article  CAS  Google Scholar 

  • Selvam K, Swaminathan K, Keo-Sang C (2003) Microbial decolorization of azo dyes and dye industry effluent by Fomes lividus. World J Microbiol Biotechnol 19:591–593

    Article  CAS  Google Scholar 

  • Senan RC, Abraham TE (2004) Bioremediation of textile azo dyes by aerobic bacterial consortium. Biodegradation 15:275–280

    Article  CAS  PubMed  Google Scholar 

  • Shanmugam V, Kumari M, Yadav KD (1999) n-Propanol as a substrate for assaying the lignin peroxidase activity of Phaenerochaete chrysosporium. Indian J Biochem Biophys 36:39–43

    CAS  PubMed  Google Scholar 

  • Shedbalkar UU, Dhanve RS, Jadhav JP (2008) Biodegradation of triphenylmethane dye cotton blue by Penicillium ochrochloron MTCC 517. J Hazard Mater 157:472–479

    Article  CAS  PubMed  Google Scholar 

  • Stolz A (2001) Basic and applied aspects in the microbial degradation of azo dyes. Appl Microbiol Biotechnol 56:69–80

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA 101:11030–11035

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Telke AA, Kalyani DC, Jadhav JP, Govindwar SP (2008) Kinetics and mechanism of Reactive Red 141 degradation by a bacterial isolate Rhizobium radiobacter MTCC 8161. Acta Chim Slov 55:320–329

    CAS  Google Scholar 

  • Verma P, Madamwar D (2003) Decolourization of synthetic dyes by a newly isolated strain of Serratia marcescens. World J Microbiol Biotechnol 19:615–618

    Article  CAS  Google Scholar 

  • Vujevic D, Koprivanac N, Loncaric Bozic A, Locke BR (2004) The removal of Direct orange 39 by pulsed corona discharge from model wastewater. Environ Technol 25:791–800

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyoti P. Jadhav.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jadhav, J.P., Phugare, S.S., Dhanve, R.S. et al. Rapid biodegradation and decolorization of Direct Orange 39 (Orange TGLL) by an isolated bacterium Pseudomonas aeruginosa strain BCH. Biodegradation 21, 453–463 (2010). https://doi.org/10.1007/s10532-009-9315-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-009-9315-6

Keywords

Navigation