Skip to main content
Log in

The recent evolution of pentachlorophenol (PCP)-4-monooxygenase (PcpB) and associated pathways for bacterial degradation of PCP

  • Review
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Man-made polychlorinated phenols such as pentachlorophenol (PCP) have been used extensively since the 1920s as preservatives to prevent fungal attack on wood. During this time, they have become serious environmental contaminants. Despite the recent introduction of PCP in the environment on an evolutionary time scale, PCP-degrading bacteria are present in soils worldwide. The initial enzyme in the PCP catabolic pathway of numerous sphingomonads, PCP-4-monooxygenase (PcpB), catalyzes the para-hydroxylation of PCP to tetrachlorohydroquinone and is encoded by the pcpB gene. This review examines the literature concerning pcpB and supports the suggestion that pcpB/PcpB should be considered a model system for the study of recent evolution of catabolic pathways among bacteria that degrade xenobiotic molecules introduced into the environment during the recent past.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

PCP:

pentachlorophenol

LGT:

lateral gene transfer

MAAI:

maleylacetate isomerase

ORF:

open reading frame

PCR:

polymerase chain reaction

RFLP:

restriction fragment length polymorphism

DCHQ:

dichlorohydroquinone

TCP:

trichlorophenol

DCP:

dichlorophenol

TCBQ:

trichlorobenzoquinone

TCHQ:

tetrachlorohydroquinone

GSH:

glutathione

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25:3389–3402

    Article  CAS  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  Google Scholar 

  • Anandarajah K, Kiefer Jr PM, Donohoe BS, Copley SD (2000) Recruitment of a double bond isomerase to serve as a reductive dehalogenase during biodegradation of pentachlorophenol. Biochemisty 39:5303–5311

    Article  CAS  Google Scholar 

  • Apajalahti JH, Karpanoja AP, Salkinoja-Salonen MS (1986) Rhodococcus chlorophenolicus sp. nov., a chlorophenol mineralizing actinomycete. Int J Syst Bacteriol 36:246–251

    CAS  Google Scholar 

  • Apajalahti JH, Salkinoja-Salonen MS (1987a) Dechlorination and para-hydroxylation of polychlorinated phenols by Rhodococcus chlorophenolicus. J Bacteriol 169:675–681

    CAS  Google Scholar 

  • Apajalahti JHA, Salkinoja-Salonen MS (1987b) Complete dechlorination of tetrachlorohydroquinone by cell extracts of pentachlorophenol-induced Rhodococcus chlorophenolicus. J Bacteriol 169:5125–5130

    CAS  Google Scholar 

  • Beaulieu M, Becaert V, Deschenes L, Villemur R (2000) Evolution of bacterial diversity during enrichment of PCP-degrading activated soils. Microb Ecol 40:345–356

    CAS  Google Scholar 

  • Berger RS (1983) Occurrence of 2,6-dichlorophenol in Dermacentor albipictus and Haemaphysalis leporispalustris (acari: Ixodidae). J Med Entomol 20:103

    CAS  Google Scholar 

  • Bielefeldt AR, Cort T (2005) Dual substrate biodegradation of a nonionic surfactant and pentachlorophenol by Sphingomonas chlorophenolica RA2. Biotechnol Bioeng 89:680–689

    Article  CAS  Google Scholar 

  • Boon N, Depuydt S, Verstraete W (2006) Evolutionary algorithms and flow cytometry to examine the parameters influencing transconjugant formation. FEMS Microbiol Ecol 55:17–27

    Article  CAS  Google Scholar 

  • LM, Eiras AE, Ferri PH, Lobo AC (2002) The role of 2,6-dichlorophenol as sex pheromone of the tropical horse tick Anocentor nitens (Acari: Ixodidae). Exp Appl Acarol 27:223–230

    Article  CAS  Google Scholar 

  • Breitbart M, Miyake JH, Rohwer F (2004) Global distribution of nearly identical phage-encoded DNA sequences. FEMS Microbiol Lett 236:249–256

    Article  CAS  Google Scholar 

  • Briglia M, Eggen RI, Van Elsas DJ ,De Vos WM (1994) Phylogenetic evidence for transfer of pentachlorophenol-mineralizing Rhodococcus chlorophenolicus PCP-I(T) to the genus Mycobacterium. Int J Syst Bacteriol 44:494–498

    Article  CAS  Google Scholar 

  • Cai M, Xun L (2002) Organization and regulation of pentachlorophenol-degrading genes in Sphingobium chlorophenolicum ATCC 39723. J Bacteriol 184:4672–4680

    Article  CAS  Google Scholar 

  • Camus JC, Pryor MJ, Medigue C ,Cole ST (2002) Re-annotation of the genome sequence of Mycobacterium tuberculosis H37Rv. J Microbiol 148:2967–2973

    CAS  Google Scholar 

  • Cassidy MB, Lee H, Trevors JT, Zablotowicz RB (1999) Chlorophenol and nitrophenol metabolism by Sphingomonas sp. UG30. J Ind Microbiol Biotechnol 23:232–241

    Article  CAS  Google Scholar 

  • Chai CT (2002) Characterization of PCP-degrading bacteria isolated from a PCP-contaminated site. Master thesis, National Sun Yat-Sen University, Kaohsiung, Taiwan

  • Coenye T, Henry D, Speert DP, Vandamme P (2004) Burkholderia phenoliruptrix sp. nov. to accommodate the 2,4,5-trichlorophenoxyacetic acid and halophenol-degrading strain AC1100. Syst Appl Microbiol 27:623–627

    Article  CAS  Google Scholar 

  • Colores GM, Radehaus PM, Schmidt SK (1995) Use of a pentachlorophenol degrading bacterium to bioremediate highly contaminated soil. Appl Biochem Biotechnol 54:271–275

    CAS  Google Scholar 

  • Colosio C, Maroni M, Barcellini W, Meroni P, Alcini D, Colombi A, Cavallo D, Foa V (1993) Toxicological and immunological findings in workers exposed to pentachlorophenol (PCP). Arch Environ Health 48:81–88

    Article  CAS  Google Scholar 

  • Copley SD (2000) Evolution of a metabolic pathway for degradation of a toxic xenobiotic: the patchwork approach. Trends Biochem Sci 25:261–265

    Article  CAS  Google Scholar 

  • Crawford RL, Ederer MM (1999) Phylogeny of Sphingomonas species that degrade pentachlorophenol. J Ind Microbiol Biotechnol 23:320–325

    Article  CAS  Google Scholar 

  • Dai M, Copley SD (2004) Genome shuffling improves degradation of the anthropogenic pesticide pentachlorophenol by Sphingobium chlorophenolicum ATCC 39723. Appl Environ Microbiol 70:2391–2397

    Article  CAS  Google Scholar 

  • Dai M, Rogers JB, Warner JR, Copley SD (2003) A previously unrecognized step in pentachlorophenol degradation in Sphingobium chlorophenolicum is catalyzed by tetrachlorobenzoquinone reductase (PcpD). J Bacteriol 185:302–310

    Article  CAS  Google Scholar 

  • Danganan CE, Ye RW, Daubaras DL, Xun L, Chakrabarty AM (1994) Nucleotide sequence and functional analysis of the genes encoding 2,4,5-trichlorophenoxyacetic acid oxygenase in Pseudomonas cepacia AC1100. Appl Environ Microbiol 60:4100–4106

    CAS  Google Scholar 

  • Ederer MM, Crawford RL, Herwig RP, Orser CS (1997) PCP degradation is mediated by closely related strains of the genus Sphingomonas. Mol Ecol 6:39–49

    Article  CAS  Google Scholar 

  • Edwards U, Rogall T, Blocker H, Emde M, Bottger E (1989) Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucl Acids Res 17:7843–7853

    Article  CAS  Google Scholar 

  • Fenchel T (2003) Biogeography for bacteria. Science 301:925–926

    Article  CAS  Google Scholar 

  • Garnier T, Eiglmeier K, Camus JC, Medina N, Mansoor H, Pryor M, Duthoy S, Grondin S, Lacroix C, Monsempe C, Simon S, Harris B, Atkin R, Doggett J, Mayes R, Keating L, Wheeler PR, Parkhill J, Barrell BG, Cole ST, Gordon SV, Hewinson RG (2003) The complete genome sequence of Mycobacterium bovis. Proc Natl Acad Sci USA 100:7877–7882

    Article  CAS  Google Scholar 

  • Geng MM, Schuhmacher A, Muehldorfer I, Bensch KW, Schaefer KP, Schneider S, Pohl T, Essig A, Marre R, Melchers K (2003) The genome sequence of Chlamydia pneumoniae TW183 and comparison with other Chlamydia strains based on whole genome sequence analysis (GenBank accession number NC_005043)

  • Gisi MR, Xun L (2003) Characterization of chlorophenol 4-monooxygenase (TftD) and NADH:flavin adenine dinucleotide oxidoreductase (TftC) of Burkholderia cepacia AC1100. J Bacteriol 185:2786–279

    Article  CAS  Google Scholar 

  • Golovleva LA, Zaborina O, Pertsova R, Baskunov B, Schurukhin Y, Kuzmin S (1991–92) Degradation of polychlorinated phenols by Streptomyces rochei 303. Biodegradation 2:201–208

  • Gribble GW (1996) Naturally occurring organohalogen compounds—a comprehensive study. In: Herz GW, Kirby RE, Moore RE, Steglich W, Tamm CH (eds) Progress in the Chemistry of Organic Natural Products, Springer-Verlag, Vienna, Austria, pp 1–420

    Google Scholar 

  • Habash MB, Beaudette LA, Cassidy MB, Leung KT, Hoang TA, Vogel HJ, Trevors JT, Lee H (2002) Characterization of tetrachlorohydroquinone reductive dehalogenase from Sphingomonas sp. UG30. Biochem Biophys Res Commun 299:634–640

    Article  CAS  Google Scholar 

  • Haggblom MM, Nohynek LJ, Palleroni NJ, Kronqvist K, Nurmiaho-Lassila EL, Salkinoja-Salonen MS, Klatte S, Kroppenstedt RM, Hagglblom MM (1994) Transfer of polychlorophenol-degrading Rhodococcus chlorophenolicus (Apajalahti et al. 1986) to the genus Mycobacterium as Mycobacterium chlorophenolicum comb. nov. Int J Syst Bacteriol 44:485–493. Erratum in: Int J Syst Bacteriol (1994) 44:854

  • Haggblom MM, Nohynek LJ, Salkinoja-Salonen MS (1988) Degradation and O-methylation of chlorinated phenolic compounds by Rhodococcus and Mycobacterium strains. Appl Environ Microbiol 54:3043–3052

    CAS  Google Scholar 

  • Heylen K, Vanparys B, Wittebolle L, Verstraete W, Boon N, De Vos P (2006) Cultivation of denitrifying bacteria: optimization of isolation conditions and diversity study. Appl Environ Microbiol 72:2637–2643

    Article  CAS  Google Scholar 

  • Ikeda H, Ishikawa J, Hanamoto A, Shinose M, Kikuchi H, Shiba T, Sakaki Y, Hattori M, Omura S (2003) Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat Biotechnol 21:526–531

    Article  Google Scholar 

  • Kaneko T, Nakamura Y, Sato S, Asamizu E, Kato T, Sasamoto S, Watanabe A, Idesawa K, Ishikawa A, Kawashima K, Kimura T, Kishida Y, Kiyokawa C, Kohara M, Matsumoto M, Matsuno A, Mochizuki Y, Nakayama S, Nakazaki N, Shimpo S, Sugimoto M, Takeuchi C, Yamada M, Tabata S (2000) Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res 7:331–338

    Article  CAS  Google Scholar 

  • Kao CM, Chai CT, Liu JK, Yeh TY, Chen KF, Chen SC (2004) Evaluation of natural and enhanced PCP biodegradation at a former pesticide manufacturing plant. Water Res 38:663–672

    Article  CAS  Google Scholar 

  • Kao CM, Liu JK, Chen YL, Chai CT, Chen SC (2005) Factors affecting the biodegradation of PCP by Pseudomonas mendocina NSYSU. J Hazard Mater 124:68–73

    Article  CAS  Google Scholar 

  • Karlson U, Rojo F, van Elsas JD, Moore E (1996) Genetic and serological evidence for the recognition of four pentachlorophenol degrading bacterial strains as a species of the genus Sphingomonas. Syst Appl Microbiol 18:539–548

    Google Scholar 

  • Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML, Pace NR (1985) Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Nat Acad Sci USA 82:6955–6959

    Article  CAS  Google Scholar 

  • Lange CC, Schneider BJ, Orser CS (1996) Verification of the role of PCP 4-monooxygenase in chlorine elimination from pentachlorophenol by Flavobacterium sp. strain ATCC 39723. Biochem Biophys Res Commun 219:146–149

    Article  CAS  Google Scholar 

  • Leung KT, Campbell S, Gan Y, White DC, Lee H, Trevors JT (1999) The role of the Sphingomonas species UG30 pentachlorophenol-4-monooxygenase in p-nitrophenol degradation. FEMS Microbiol Lett 173:247–253

    Article  CAS  Google Scholar 

  • Leung KT, Cassidy MB, Shaw KW, Lee H, Trevors JT, Lohmeier-Vogel EM, Vogel HJ (1997) Pentachlorophenol biodegradation by Pseudomonas spp. UG25 and UG30. World J Microbiol Biotechnol 13:305–313

    Article  CAS  Google Scholar 

  • Li DY, Eberspacher J, Wagner B, Kuntzer J, Lingens F (1991) Degradation of 2,4,6-trichlorophenol by Azotobacter sp. strain GP1. Appl Environ Microbiol 57:1920–1928

    CAS  Google Scholar 

  • Louie TM, Webster CM, Xun L (2002) Genetic and biochemical characterization of a 2,4,6-trichlorophenol degradation pathway in Ralstonia eutropha JMP134. J Bacteriol 184:3492–3500

    Article  CAS  Google Scholar 

  • Mahmood S, Paton GI, Prosser JI (2005) Cultivation-independent in situ molecular analysis of bacteria involved in degradation of pentachlorophenol in soil. Environ Microbiol 7:1349–1360

    Article  CAS  Google Scholar 

  • Mannisto MK, Tiirola MA, Salkinoja-Salonen MS, Kulomaa MS, Puhakka JA. (1999) Diversity of chlorophenol-degrading bacteria isolated from contaminated boreal groundwater. Arch Microbiol 171:189–197

    Article  CAS  Google Scholar 

  • Martin-Le Garrec G, Artaud I, Capeillere-Blandin C (2001) Purification and catalytic properties of the chlorophenol 4-monooxygenase from Burkholderia cepacia strain AC1100. Biochim Biophys Acta 1547:288–2301

    CAS  Google Scholar 

  • Martins JM, Monrozier JL, Chalamet A, Bardin R (1997) Microbial response to repeated application of low concentrations of pentachlorophenol in an alfisol under pasture. Chemosphere 35:163–1650

    Article  Google Scholar 

  • McCarthy DL, Claude AA, Copley SD (1997) In vivo levels of chlorinated hydroquinones in a pentachlorophenol-degrading bacterium. Appl Environ Microbiol 63:1883–1888

    CAS  Google Scholar 

  • Nam IH, Chang Y-S, Hong H-B, Lee H-E (2003) A novel catabolic activity of Pseudomonas veronii in biotransformation of pentachlorophenol. Appl Microbiol Biotechnol 62:284–290

    Article  CAS  Google Scholar 

  • Nierman WC, DeShazer D, Kim HS, Tettelin H, Nelson KE, Feldblyum T, Ulrich RL, Ronning CM, Brinkac LM, Daugherty SC, Davidson TD, Deboy RT, Dimitrov G, Dodson RJ, Durkin AS, Gwinn ML, Haft DH, Khouri H, Kolonay JF, Madupu R, Mohammoud Y, Nelson WC, Radune D, Romero CM, Sarria S, Selengut J, Shamblin C, Sullivan SA, White O, Yu Y, Zafar N, Zhou L, Fraser CM (2004) Structural flexibility in the Burkholderia mallei genome. Proc Natl Acad Sci USA 101:14247–14251

    Article  Google Scholar 

  • Nohynek LJ, Suhonen EL, Nurmiaho-Lassila EL, Hantula J, Salkinoja-Salonen M (1995) Description of four pentachlorophenol-degrading bacterial strains as Sphingomonas chlorophenolica sp. nov. Syst Appl Microbiol 18:527–538

    Google Scholar 

  • Ohtsubo Y, Miyauchi K, Kanda K, Hatta T, Kiyohara H, Senda T, Nagata Y, Mitsui Y, Takagi M (1999) PcpA, which is involved in the degradation of pentachlorophenol in Sphingomonas chlorophenolica ATCC39723, is a novel type of ring-cleavage dioxygenase. FEBS Lett 459:395–398

    Article  CAS  Google Scholar 

  • Orser CS, Lange CC (1994) Molecular analysis of pentachlorophenol degradation. Biodegradation 5:277–288

    Article  CAS  Google Scholar 

  • Orser CS, Lange CC, Xun L, Zahrt TC, Schneider BJ (1993) Cloning, sequence analysis, and expression of the Flavobacterium pentachlorophenol-4-monooxygenase gene in Escherichia coli. J Bacteriol 175:411–416

    CAS  Google Scholar 

  • Radehaus PM, Schmidt SK (1992) Characterization of a novel Pseudomonas sp. that mineralizes high concentrations of pentachlorophenol. Appl Environ Microbiol 58:2879–2885

    CAS  Google Scholar 

  • Resnik SM, Chapman PJ (1994) Physiological properties and substrate specificity of a pentachlorophenoldegrading Pseudomonas species. Biodegradation 5:47-54

    Google Scholar 

  • Saber D, Crawford RL (1985) Isolation and characterization of pentachlorophenol-degrading Flavobacterium strains. Appl Environ Microbiol 50:1512–1518

    CAS  Google Scholar 

  • Saboo VM, Gealt MA (1998) Gene sequences of the pcpB gene of pentachlorophenol-degrading Sphingomonas chlorophenolica found in nondegrading bacteria. Can J Microbiol 44:667–675

    Article  CAS  Google Scholar 

  • Shah S, Thakur IS (2003) Enzymatic dehalogenation of pentachlorophenol by Pseudomonas fluorescens of the microbial community from tannery effluent. Curr Microbiol 47:65–70

    Article  CAS  Google Scholar 

  • Stanlake GJ, Finn RK (1982) Isolation and characterization of a pentachlorophenol-degrading bacterium. Appl Environ Microbiol 44:1421–1427

    CAS  Google Scholar 

  • Steiert JG, Crawford RL (1986) Catabolism of pentachlorophenol by a Flavobacterium sp. Biochem Biophys Res Commun 141:825–830

    Article  CAS  Google Scholar 

  • Steiert JG, Pignatello JJ, Crawford RL (1987) Degradation of chlorinated phenols by a pentachlorophenol-degrading bacterium. Appl Environ Microbiol 53:907–910

    CAS  Google Scholar 

  • Steinle P, Stucki G, Stettler R, Hanselmann KW (1998) Aerobic mineralization of 2,6-dichlorophenol by Ralstonia sp. strain RK1. Appl Environ Microbiol 64:2566–2571

    CAS  Google Scholar 

  • Takami H, Takaki Y, Uchiyama I (2002) Genome sequence of Oceanobacillus iheyensis isolated from the Iheya Ridge and its unexpected adaptive capabilities to extreme environments. Nucl Acids Res 30:3927–3935

    Article  CAS  Google Scholar 

  • Takeuchi M, Hamana K, Hiraishi A (2001) Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51:1405–1417

    CAS  Google Scholar 

  • Thakur IS, Verma P, Upadhayaya K. (2002) Molecular cloning and characterization of pentachlorophenol-degrading monooxygenase genes of Pseudomonas sp. from the chemostat. Biochem Biophys Res Comm 290:770–774

    Article  CAS  Google Scholar 

  • Tiirola MA, Mannisto MK, Puhakka JA, Kulomaa MS (2002a) Isolation and characterization of Novosphingobium sp. strain MT1, a dominant polychlorophenol-degrading strain in a groundwater bioremediation system. Appl Environ Microbiol 68:173–180

    Article  CAS  Google Scholar 

  • Tiirola MA, Wang H, Paulin L, Kulomaa MS (2002b) Evidence for natural horizontal transfer of the pcpB gene in the evolution of polychlorophenol-degrading sphingomonads. Appl Environ Microbiol 68:4495–4501

    Article  CAS  Google Scholar 

  • Tomasi I, Artaud I, Bertheau Y, Mansuy D (1995) Metabolism of polychlorinated phenols by Pseudomonas cepacia AC1100: determination of the first two steps and specific inhibitory effect of methimazole. J Bacteriol 177:307–311

    CAS  Google Scholar 

  • Top EM, Springael D (2003) The role of mobile genetic elements in bacterial adaptation to xenobiotic organic compounds. Curr Opin Biotechnol 14:262–269

    Article  CAS  Google Scholar 

  • Topp E, Xun LY, Orser CS (1992) Biodegradation of the herbicide bromoxynil (3,5-dibromo-4-hydroxybenzonitrile) by purified pentachlorophenol hydroxylase and whole cells of Flavobacterium sp. strain ATCC 39723 is accompanied by cyanogenesis. Appl Environ Microbiol 58:502–506

    CAS  Google Scholar 

  • Uotila JS, Kitunen VH, Coote T, Saastamoinen T, Salkinoja-Salonen M, Apajalahti JH (1995) Metabolism of halohydroquinones in Rhodococcus chlorophenolicus PCP-1. Biodegradation 6:119–126

    Article  CAS  Google Scholar 

  • Uotila JS, Salkinoja-Salonen MS, Apajalahti JH (1991) Dechlorination of pentachlorophenol by membrane bound enzymes of Rhodococcus chlorophenolicus PCP-I. Biodegradation 2:25–31

    Article  CAS  Google Scholar 

  • Vandecasteele FPJ, Hess TF, Crawford RL (2003) Constructing microbial consortia with optimal biomass production using a genetic algorithm. 2003 Genetic and Evolutionary Computation Conference (GECCO): Late-breaking papers, pp 299–302

  • Vandecasteele FPJ (2003) Constructing efficient microbial consortia using a genetic algorithm. Biological applications for genetic and evolutionary computation, Genetic and evolutionary computation conference workshop program, p 69

  • Vandecasteele FPJ, Crawford RL, Hess TF (2006) Demonstrating the suitability of genetic algorithms for driving microbial ecosystems in desirable directions. Antonie von Leeuwenhoek In press

  • Wieser M, Wagner B, Eberspacher J, Lingens F (1997) Purification and characterization of 2,4,6-trichlorophenol-4-monooxygenase, a dehalogenating enzyme from Azotobacter sp. strain GP1. J Bacteriol 179:202–208

    CAS  Google Scholar 

  • Xun L (1996) Purification and characterization of chlorophenol 4-monooxygenase from Burkholderia cepacia AC1100. J Bacteriol 178:2645–2649

    CAS  Google Scholar 

  • Xun L, Bohuslavek J, Cai M (1999) Characterization of 2,6-dichloro-p-hydroquinone 1,2-dioxygenase (PcpA) of Sphingomonas chlorophenolica ATCC 39723. Biochem Biophys Res Commun 266:322–325

    Article  CAS  Google Scholar 

  • Xun L, Orser CS (1991a) Biodegradation of triiodophenol by cell-free extracts of a pentachlorophenol-degrading Flavobacterium sp. Biochem Biophys Res Commun 174:43–48

    Article  CAS  Google Scholar 

  • Xun LY, Orser CS (1991b) Purification of a Flavobacterium pentachlorophenol-induced periplasmic protein (PcpA) and nucleotide sequence of the corresponding gene (pcpA). J Bacteriol 173:2920–2926

    CAS  Google Scholar 

  • Xun L, Topp E, Orser CS (1992a) Diverse substrate range of a Flavobacterium pentachlorophenol hydroxylase and reaction stoichiometries. J Bacteriol 174:2898–2902

    CAS  Google Scholar 

  • Xun L, Topp E, Orser CS (1992b) Purification and characterization of a tetrachloro-p-hydroquinone reductive dehalogenase from a Flavobacterium sp. J Bacteriol 174:8003–8007

    CAS  Google Scholar 

  • Yan DZ, Liu H, Zhou NY (2006) Conversion of Sphingobium chlorophenolicum ATCC 39723 to a hexachlorobenzene degrader by metabolic engineering. Appl Environ Microbiol 72:2283–2286

    Article  CAS  Google Scholar 

  • Yang CF, Lee CM, Wang CC (2006) Isolation and physiological characterization of the pentachlorophenol degrading bacterium Sphingomonas chlorophenolica. Chemosphere 62:709–714

    Article  CAS  Google Scholar 

  • Zaborina O, Baskunov B, Baryshnikova L, Golovleva L (1997) Degradation of pentachlorophenol in soil by Streptomyces rochei 303. J Environ Sci Health B 32:55–70

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Metagenomic analyses reported here were supported by grant 1-R21ES012814 from the National Institute of Environmental Health Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald L. Crawford.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crawford, R.L., Jung, C.M. & Strap, J.L. The recent evolution of pentachlorophenol (PCP)-4-monooxygenase (PcpB) and associated pathways for bacterial degradation of PCP. Biodegradation 18, 525–539 (2007). https://doi.org/10.1007/s10532-006-9090-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-006-9090-6

Keywords

Navigation