Skip to main content

Advertisement

Log in

Tropical high Andean drylands: species diversity and its environmental determinants in the Central Andes

  • Review Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Diversity determinants have mostly been evaluated in high diversity areas, leaving behind regions with less species diversity such as drylands. Here we aim to analyze the patterns of plant diversity in tropical drylands in the southern Central Andes, and determine the importance of water, energy, and environmental heterogeneity as diversity determinants of the arid and semi-arid adapted flora. We examined the distribution of 645 native species from lowlands to 6000 m.a.s.l. in the north-western region of Argentina (NWA) and define hotspots of diversity within each NWA ecoregion. Diversity is concentrated in regions of middle elevation with intermediate values of water and energy, at the transition between arid and semi-arid regions. Furthermore, we showed that in tropical drylands energy input is as fundamental for plant diversity as water input is and, we found that the effects of these variables varied with elevation and, also with aridity. Water variables had the strongest effect on the flora in the arid high Andean ecoregions, where an increase in precipitation during the growing season stimulated species diversity. Energy only became more important than water when the arid adapted flora entered the low and semi-arid regions where energy increments reduce species diversity. Our analysis provides strong quantitative support for climate variables as the main determinants of plant diversity across different ecoregions of the southern Central Andes. Given the present climate change events, knowing how these variables affect the distribution of the arid adapted flora is crucial for planning strategies for achieve their present and future conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aagesen L, Bena MJ, Nomdedeu S, Panizza A, López R, Zuloaga F (2012) Areas of endemism in the Southern Central Andes. Darwiniana 50:218–251

    Google Scholar 

  • Anderson RP, Raza A (2010) The effect of the extent of the study region on GIS models of species geographic distributions and estimates of niche evolution: preliminary tests with montane rodents (genus Nephelomys) in Venezuela. J Biogeogr 37:1378–1393

    Article  Google Scholar 

  • Barthlott W, Mutke J, Rafiqpoor MD, Kier G, Kreft H (2005) Global centres of vascular plant diversity. Nova Acta Leopold 92:61–83

    Google Scholar 

  • Bianchi AR, Yañez CE (1992) Las precipitaciones en el noroeste argentino. INTA, Salta

    Google Scholar 

  • Blach-Overgaard A, Svenning JC, Dransfield J, Greve M, Balslev H (2010) Determinants of palm species distributions across Africa: the relative roles of climate, non-climatic environmental factors, and spatial constraints. Ecography 33:380–391

    Google Scholar 

  • Bonkoungou EG (2003) Biodiversity in the drylands: challenges and opportunities for conservation and sustainable use. Challenge Paper. The Global Drylands Initatve, UNDP Drylands Development Centre, Nairobi

    Google Scholar 

  • Boria RA, Olson LE, Goodman SM, Anderson RP (2014) Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol Model 275:73–77

    Article  Google Scholar 

  • Brown AD, Placci LG, Grau HR (1993) Ecología y diversidad de las selvas subtropicales de la Argentina. In: Goin F, Goñi F (eds) Elementos de política ambiental. H. Cámara de Diputados, Buenos Aires, pp 215–222

    Google Scholar 

  • Bucklin DN, Basille M, Benscoter AM, Brandt LA, Mazzotti FJ, Romañach SS et al (2015) Comparing species distribution models constructed with different subsets of environmental predictors. Divers Distrib 21:23–35

    Article  Google Scholar 

  • Cabrera AL (1976) Regiones fitogeográficas argentinas. Enciclopedia Argentina de Agricultura y Jardinería 2:1–85

    Google Scholar 

  • Cabrera AL, Willink A (1973) Biogeografía de América latina. Monografía 13, Serie de Biología, Organización de Estados Americanos, Washington, DC

    Google Scholar 

  • Castellanos A (1944) Los tipos de vegetación de la Republica Argentina. Monografías del Instituto de Estudios Geográficos. Universidad Nacional de Tucumán 4:66–94

  • CEPF Critical Ecosystem Partnership Fund (2015) Ecosystem Profile Technical Summary Tropical Andes Biodiversity Hotspot. NatureServe and EcoDecisión, p 53

  • Crisp MD, Laffan S, Linder HP, Monro A (2001) Endemism in the Australian flora. J Biogeogr 28:183–198

    Article  Google Scholar 

  • Distler T, Jorgensen PM, Graham A, Davidse G, Jimenez I (2009) Determinants and prediction of broad-scale plant richness across the Western Neotropics 1. Ann Mo Bot Gard 96:470–491

    Article  Google Scholar 

  • Dore MH (2005) Climate change and changes in global precipitation patterns: what do we know? Environ Int 31:1167–1181

    Article  PubMed  Google Scholar 

  • Eiserhardt WL, Bjorholm S, Svenning JC, Rangel TF, Balslev H (2011) Testing the water–energy theory on American palms (Arecaceae) using geographically weighted regression. PLoS ONE 6:e27027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elith J et al (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  • Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17:43–57

    Article  Google Scholar 

  • ESRI (2011) ArcGIS desktop: release 10. Environmental Systems Research Institute, CA

    Google Scholar 

  • Ezcurra E (2006) Natural history and evolution of the world`s deserts. In: Ezcurra E (ed) Global deserts outlook. UNEP, Copenhagen, pp 2–26

    Google Scholar 

  • FAO (1971) Food and Agriculture Organization of the United Nations. Mapa mundial de suelos. UNESCO, Paris 1971 (www.fao.org)

  • Field R, Hawkins BA, Cornell HV, Currie DJ, Diniz-Filho JA, Guégan JF, Kaufman DM, Kerr JT, Mittelbach GG, Oberdorff T, O’Brien EM, Turner JRG (2009) Spatial species-richness gradients across scales: a meta-analysis. J Biogeogr 36:132–147

    Article  Google Scholar 

  • Francis AP, Currie DJ (1998) Global patterns of tree species richness in moist forests: another look. Oikos 81:598–602

    Article  Google Scholar 

  • Francis AP, Currie DJ (2003) A globally consistent richness: climate relationship for angiosperms. Am Nat 161:523–536

    Article  PubMed  Google Scholar 

  • Garreaud R, Vuille M, Clement AC (2003) The climate of the Altiplano: observed current conditions and mechanism of past changes. Paleogeogr Palaeoclimatol Palaeoecol 194:1–18

    Article  Google Scholar 

  • Gaston K (2000) Global patterns in biodiversity. Nature 405:220–227

    Article  CAS  PubMed  Google Scholar 

  • Godoy-Bürki AC (2016) Efectos del cambio climático sobre especies de plantas vasculares del sur de los Andes Centrales: un estudio en el noroeste de Argentina (NOA). Ecol Austral 26:83–94

    Google Scholar 

  • Godoy-Bürki AC, Ortega-Baes P, Sajama J, Aagesen L (2014) Conservation priorities in the Southern Central Andes: mismatch between endemism and diversity hotspots in the regional flora. Biodivers Conserv 23:81–107

    Article  Google Scholar 

  • Gonzales JA (2009) Climatic change and other anthropogenic activities are affecting environmental services on the Argentina Northwest (ANW). Earth Environ Sci 6:1–2

    Google Scholar 

  • Graham CH, Elith J, Hijmans RJ, Guisan A, Townsend-Peterson A, Loiselle BA (2008) The influence of spatial errors in species occurrence data used in distribution models. J Appl Ecol 45:239–247

    Article  Google Scholar 

  • Grau RH, Gasparri IN, Aide MT (2005) Agriculture expansion and deforestation in seasonally dry forests of north-west Argentina. Environ Conserv 32:140–148

    Article  Google Scholar 

  • Hauman-Merck L, Burkart A, Parodi LR, Cabrera AL (1947) La vegetación de la Republica Argentina. In: Geografia de la Republica Argentina vol 8, pp 5–349

  • Hawkins BA et al (2003) Energy, water and broad scale geographic patterns of species richness. Ecology 84:3105–3117

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Holmberg EL (1898) La flora de la Republica Argentina. Segundo Censo Rep Argent 1895(1):385–474

    Google Scholar 

  • Hughes L (2003) Climate change and Australia: trends, projections and impacts. Austral Ecol 28:423–443

    Article  Google Scholar 

  • Ibisch PL, Beck SG, Gerkmann B, Carretero A (2003) Diversidad Biológica: Ecoregiones y ecosistemas. In: Ibisch P, Merida G (eds) Biodiversidad: La riqueza de Bolivia. Editorial FAN, Santa Cruz de la Sierra, pp 73–75

    Google Scholar 

  • Izquierdo AE, Grau HR (2009) Agriculture adjustment, land-use transition and protected areas in North-western Argentina. J Environ Manag 90:858–865

    Article  Google Scholar 

  • Jorgensen PM, Ulloa Ulloa C, León B et al (2011) Regional patterns of vascular plant diversity and endemism. In: Herzog SK, Martínez R, Jørgensen PM, Tiessen H (eds) Climate change and biodiversity in the tropical andes. Inter-American Institute for Global Change Research, São José dos Campos, pp 192–203

    Google Scholar 

  • Josse C et al (2003) Ecological systems of Latin America and the Caribbean: a working classification of terrestrial systems. NatureServe, Arlington

    Google Scholar 

  • Kessler M, Grytnes JA, Halloy SR et al (2011) Gradients of plant diversity: local patterns and processes. In: Herzog SK, Martínez R, Jørgensen PM, Tiessen H (eds) Climate change and biodiversity in the tropical andes. Inter-American Institute for Global Change Research, São José dos Campos, pp 204–219

    Google Scholar 

  • Kreft H, Jetz W (2007) Global patterns and determinants of vascular plant diversity. PNAS 104:5925–5930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Stohlgren TJ (2009) Maxent modelling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia. J Ecol Nat Environ 1:94–98

    Google Scholar 

  • Li L, Wang Z, Zerbe S, Abdusalih N, Tang Z, Ma M, Yin L, Mohammat A, Han W, Fang J (2013) Species richness patterns and water-energy dynamics in the Drylands of Northwest China. PLoS ONE 8:e66450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorentz PG (1876) Cuadro de la vegetación de la Republica Argentina. In: Napp R (ed) La Republica Argentina, Buenos Aires, pp 77–136

  • Luebert F, Weigend M (2014) Phylogenetic insights into Andean plant diversification. Front Ecol Evol 2:27

    Article  Google Scholar 

  • Martínez-Carretero E (1995) La Puna Argentina: delimitación general y división en distritos florísticos. Bol Soc Argent Bot 31:27–40

    Google Scholar 

  • McFadden D (1979) Quantitative methods for analyzing travel behavior of individuals: some recent developments. In: Hensher DA, Stopher PR (eds) Behavioral Travel Modelling, Chapter 13. Groom Helm London, London, pp 279–318

    Google Scholar 

  • Montgomery DC, Peck EA, Vining GG (2012) Introduction to Linear Regression Analysis, 5th edn. Wiley, New york

    Google Scholar 

  • Morrone JJ (2006) Biogeographic areas and transition zones of Latin America and the Caribbean islands based on panbiogeographic and cladistic analyses of the entomofauna. Annu Rev Entomol 51:467–494

    Article  CAS  PubMed  Google Scholar 

  • Morrone JJ (2014) Biogeographical regionalization of the Neotropical region. Zootaxa 3782:1–110

    Article  PubMed  Google Scholar 

  • Moser D, Dullinger S, Englisch T et al (2005) Environmental determinants of vascular plant species richness in the Austrian Alps. J Biogeogr 32:1117–1127

    Article  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GBA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  PubMed  Google Scholar 

  • Olson DM, Dinerstein E, Wikramanayake ED et al (2001) Terrestrial ecoregions of the World: a new map of life on Earth. BioSci 51:933–938

    Article  Google Scholar 

  • Parodi LR (1945) Las regiones fitogeográficas argentinas y sus relaciones con la industria forestal. In: Verdoorn F (ed) Plants and plant science in Latin America. Chronica Botanica Company, Waltham, pp 127–132

    Google Scholar 

  • Pearson RG, Raxworthy CJ, Nakamura M, Peterson AT (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeogr 34:102–117

    Article  Google Scholar 

  • Peet R (1974) The measurement of species diversity. Annu Rev Ecol Syst 5:285–307

    Article  Google Scholar 

  • Pernetta AP (2014) Conserving dryland biodiversity. Biodiversity 15(2-3):237–238

    Article  Google Scholar 

  • Philips S, Dudik M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175

    Article  Google Scholar 

  • Phillips S, Anderson R, Schapire R (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, Team RC (2012) nlme: linear and nonlinear mixed effects models. R package version 3, 103. http://CRAN.R-project.org/package=nlme

  • Radosavljevic A, Anderson RP (2014) Making better Maxent models of species distributions: complexity, overfitting and evaluation. J Biogeogr 41:629–643

    Article  Google Scholar 

  • Ribichich AM (2002) El modelo clásico de la fitogeografía de Argentina: un análisis crítico. Interciencia 27:669–675

    Google Scholar 

  • Ricklefs RE, Latham RE, Qian H (1999) Global patterns of tree species richness in moist forests: distinguishing ecological influences and historical contingency. Oikos 86:369–373

    Article  Google Scholar 

  • Roig FA, Roig-Juñent S, Corbalán V (2009) Biogeography of the Monte Desert. J Arid Environ 73:164–172

    Article  Google Scholar 

  • Safriel U, Adeel Z (2005) Dryland systems. In: Hassan R, Scholes R, Ash N (eds) Ecosystems and human well-being, current state and trends, vol 1. Island Press, Washington, pp 625–658

    Google Scholar 

  • Shcheglovitova M, Anderson RP (2013) Estimating optimal complexity for ecological niche models: a jackknife approach for species with small sample sizes. Ecol Model 269:9–17

    Article  Google Scholar 

  • Stein A, Gerstner K, Kreft H (2014) Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol Lett 17:866–880

    Article  PubMed  Google Scholar 

  • Trabucco A, Zomer RJ (2009) Global aridity index (global-aridity) and global potential evapo-transpiration (Global-PET) Geospatial Database. CGIAR

  • UNEP (2006) Don’t desert drylands! Facts about deserts and desertification. www.unep.org

  • Versieux LM, Wendt T (2007) Bromeliaceae diversity and conservation in Minas Gerais state, Brazil. Biodivers Conserv 16:2989–3009

    Article  Google Scholar 

  • Vides-Almonacid R, Ayarde H, Scrocchi GJ, Romero F, Boero C, Chani JM (1998) Biodiversidad de Tucumán y el Noroeste Argentino. Opera Lilloana, pp 43–89

  • Villagrán C, Arroyo MK, Marticorena C (1983) Efectos de la desertización en la distribución de la flora andina de Chile. Rev Chil Hist Nat 56:137–157

    Google Scholar 

  • Whittaker RJ, Nogués-Bravo D, Araújo MB et al (2007) Geographical gradients of species richness: a test of the water-energy conjecture of Hawkins (2003) using European data for five taxa. Glob Ecol Biogeogr 16:76–89

    Article  Google Scholar 

  • Wieczorek J, Guo Q, Hijmans RJ (2004) The point-radius method for georeferencing locality descriptions and calculation associated uncertainty. Int J Geogr Inf Sci 18:745–767

    Article  Google Scholar 

  • Wisz MS, Hijmans RJ, Li J, Peterson AT, Graham CH, Guisan A (2008) Effects of sample size on the performance of species distribution models. Divers Distrib 14:763–773

    Article  Google Scholar 

  • Young KR, Ulloa Ulloa C, Luteyn JL, Knapp S (2002) Plant evolution and endemism in Andean South America: an introduction. Bot Rev 68:4–21

    Article  Google Scholar 

  • Zuloaga FO, Morrone O, Rodríguez D (1999) Análisis de la biodiversidad en plantas vasculares de la Argentina. Kurtziana 27:17–167

    Google Scholar 

  • Zuloaga FO, Morrone, O, Belgrano MJ (2008) Catálogo de las Plantas Vasculares del Cono Sur. Monogr Syst Bot Mo Bot Gard 107:609–967. (http://www2.darwin.edu.ar)

  • Zuur AF, Leno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York, p 574

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana C. Godoy-Bürki.

Additional information

Communicated by Francis Brearley.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Godoy-Bürki, A.C., Biganzoli, F., Sajama, J.M. et al. Tropical high Andean drylands: species diversity and its environmental determinants in the Central Andes. Biodivers Conserv 26, 1257–1273 (2017). https://doi.org/10.1007/s10531-017-1311-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-017-1311-2

Keywords

Navigation