Skip to main content

Advertisement

Log in

Small shifts in microsite occupation could mitigate climate change consequences for mountain top endemics: a test analyzing saxicolous lichen distribution patterns

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

The extent to which small shifts among local topographic microsites could mitigate the effects of larger-scale climate change in arctic–alpine systems including mountain top organisms is largely unknown. This study is among the first to evaluate the relative contribution of microsite and altitude as a proxy for climate change on saxicolous lichen communities. We registered 107 lichen species in 54 boulders ranging from 900 to 2700 m.a.s.l. and in a large array of microsites in central Argentina. Communities ordinated along NMS multivariate analysis axes 1, 2 and 3 presented a cumulative R2 of 80%. The three axes were explained by altitude with axis 1 only being explained by altitude. Axis 2 was also explained by slope and aspect whereas axis 3 was explained by the interaction of altitude with aspect indicating that aspect was important only at lower altitudes but not at the mountain top. Lichen cover and richness were similar throughout the altitudinal gradient. We interpret that under a climate warming scenario, lower altitude species occupying pole ward facing slopes will have to migrate upwards while at the mountain top—for most communities—there still is scope for microsite segregation to compensate climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Armesto JJ, Contreras LC (1981) Saxicolous lichen communities: nonequilibrium systems? Am Nat 118:597–604

    Article  Google Scholar 

  • Armstrong RA (1975) The influence of aspect on the pattern of seasonal growth in the lichen Parmelia glabratula ssp. fuliginosa. New Phytol 75:245–251. doi:10.1111/j.1469-8137.1975.tb-01393.x

    Article  Google Scholar 

  • Armstrong RA (2015) The influence of environmental factors on the growth of lichens in the field. In: Upreti DK, Divakar PK, Shukla V, Bajpal R (eds) Recent advances in lichenology. Springer, New Delhi, pp 1–18

    Google Scholar 

  • Armstrong RA, Welch AR (2007) Competition in lichen communities. Symbiosis 43:1–12

    Google Scholar 

  • Austrheim G (2002) Plant diversity patterns in semi-natural grasslands along an elevational gradient in southern Norway. Plant Ecol 161:193–205

    Article  Google Scholar 

  • Baniya CB, Solhoy T, Gauslaa Y, Palmer MW (2010) The elevation gradient of lichen species richness in Nepal. Lichenologist 42:83–96. doi:10.1017/S0024282909008627

    Article  Google Scholar 

  • Bässler C, Cadotte MW, Beudert B, Heibl C, Blaschke M, Heribert Bradtka J, Langbehn T, Werth S, Müller J (2015) Contrasting patterns of lichen functional diversity and species richness across an elevation gradient. Ecography 38:1–10. doi:10.1111/ecog.01789

    Article  Google Scholar 

  • Bruun HH, Moen J, Virtanen R, Grytnes JA, Oksanen L, Angerbjörn A (2006) Effects of altitude and topography on species richness of vascular plants, bryophytes and lichens in alpine communities. J Veg Sci 17:37–46

    Article  Google Scholar 

  • Cabido M, Funes G, Pucheta E, Vendramini F, Díaz S (1998) A chorological analysis of the mountains from Central Argentina. Is all what we call Sierra Chaco really Chaco? Candollea 53:321–331

    Google Scholar 

  • Cáceres MES, Lücking R, Rambold G (2007) Phorophyte specificity and environmental parameters versus stochasticity as determinants for species composition of corticolous lichen communities in the Atlantic rain forest of northeastern Brazil. Mycol Prog 6:117–136

    Article  Google Scholar 

  • Cairns DM, Moen J (2004) Herbivory influences tree lines. J Ecol 92:1019–1024

    Article  Google Scholar 

  • Cingolani A, Renison D, Zak M, Cabido M (2004) Mapping vegetation in a heterogeneous mountain rangeland using Landsat data: an alternative method to define and classify land-cover units. Remote Sens Environ 92:84–97

    Article  Google Scholar 

  • Cingolani A, Renison D, Tecco P, Gurvich D, Cabido M (2008) Predicting cover types in a mountain range with long evolutionary grazing history: a GIS approach. J Biogeogr 35:538–551

    Article  Google Scholar 

  • Colladon L, Pazos I (2014) Anuario pluviométrico 1992/93–2011/12, Cuenca del Río San Antonio. Sistema del Río Suquía-Provincia de Provincia de Córdoba. Instituto Nacional del Agua y Centro de Investigaciones de la Región Semiárida (CIRSA), Córdoba

  • Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW (2014) InfoStat versión 2014. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Córdoba, URL http://www.infostat.com.ar

  • Estrabou C (2000) Patrones de distribución geográfica de Parmeliaceae sensu stricto (Ascomycetes liquenizados) en la provincia de Córdoba, Argentina. NACC Bioloxía 10:11–19

    Google Scholar 

  • Estrabou C, Adler MT (1999) Novedades sobre Parmeliaceae sensu stricto (Ascomycota liquenizados) de la Provincia de Córdoba, República Argentina. Bol Soc Argent Bot 34:63–73

    Google Scholar 

  • Estrabou C, Rodríguez JM, Prieri B, Lijteroff R (2006) Contribución al conocimiento de los líquenes epifitos del extremo sur del Gran Chaco. Kurtziana 32:25–43

    Google Scholar 

  • Estrabou C, Quiroga C, Rodriguez JM (2014) Replacement of lichen community in eutrophic forests in the province of Córdoba, Argentina. Bosque 35:49–55

    Article  Google Scholar 

  • Filippini E, Estrabou C, Rodriguez JM (2014) Lichen community from an endangered forest in central Argentina. Lazaroa 35:55–63

    Article  Google Scholar 

  • Fraser CI, Nikula R, Ruzzante DE, Waters JM (2012) Poleward bound: biological impacts of Southern Hemisphere glaciation. Trends Ecol Evolut 27:462–471

    Article  Google Scholar 

  • Funes G, Cabido M (1995) Variabilidad local y regional de la vegetación rupícola de las Sierras Grandes de Córdoba, Argentina. Kurtziana 24:173–188

    Google Scholar 

  • García C, Renison D, Cingolani AM, Fernández-Juricic E (2008) Avifaunal changes as a consequence of large-scale livestock exclusion in the mountains of Central Argentina. J Appl Ecol 45:351–360

    Article  Google Scholar 

  • Gilbert OL (2003) The lichen flora of unprotected soft sea cliffs and slopes. Lichenologist 35:245–254

    Article  Google Scholar 

  • Giorgis MA, Lopez ML, Rivero D, Cingolani MA (2015) Cambios climáticos en las sierras de Córdoba (Argentina) durante el holoceno. Aportes a las reconstrucciones climáticas a través del análisis de silicofitolitos del sitio arqueológico El Alto 3. Bol Soc Argent Bot 50:361–375

    Google Scholar 

  • Guisan A, Edwards TC Jr., Hastie T (2002) Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecol Model 57:89–100

    Article  Google Scholar 

  • John E, Dale MRT (1990) Environmental correlates of species distributions in a saxicolous lichen community. J Veg Sci 1:385–392

    Article  Google Scholar 

  • Kuntz K, Larson DW (2006) Microtopographic control of vascular plant, bryophyte and lichen communities on cliff faces. Plant Ecol 185:239–253

    Article  Google Scholar 

  • Lange OL, Hahn SC, Meyer A, Tenhunen JD (1998) Upland tundra in the foothills of the Brooks range, Alaska, USA: lichen long-term photosynthetic CO2 uptake and net carbon gain. Arct Alp Res 30:252–261

    Article  Google Scholar 

  • Marcora P, Hensen I, Renison D, Seltmann P, Wesche K (2008) The performance of Polylepis australis trees along their entire altitudinal range: implications of climate change for their conservation. Divers Distrib 14:630–636

    Article  Google Scholar 

  • Matthes U, Ryan BD, Larson DW (2000) Community structure of epilithic lichens on the cliffs of the Niagara Escarpment, Ontario, Canada. Plant Ecol 148:233–244

    Article  Google Scholar 

  • Matveyeva N, Chernov Y (2000) Biodiversity of terrestrial ecosystems. In: Nuttall M, Callaghan TV (eds) The arctic: environment, people, policy. Harwood Academic Publishers, Reading, pp 233–273

    Google Scholar 

  • McCune B, Grace JB (2002) Analysis of ecological communities. MjM Software Design, Gleneden Beach

    Google Scholar 

  • McCune B, Mefford MJ (2011) PC-ORD Multivariate analysis of ecological data. Version 6.0 MjM Software, Gleneden Beach

    Google Scholar 

  • Nascimbene J, Marini L (2015) Epiphytic lichen diversity along elevational gradients: biological traits reveal a complex response to water and energy. J Biogeogr 42:1222–1232. doi:10.1111/jbi.12493

    Article  Google Scholar 

  • Nash TH III, Ryan BD, Gries C, Bungartz F (2002) Lichen Flora of the Greater Sonoran Desert Region, vol I. Lichens Unlimited, Tempe, p 532

    Google Scholar 

  • Nores M (1995) Insular biogeography of birds on mountaintops in northwestern Argentina. J Biogeogr 22:61–70

    Article  Google Scholar 

  • Orange A, James PW, White FJ (2001) Microchemical methods for the identification of lichens. British Lichen Society, London

    Google Scholar 

  • Pentecost A (1979) Aspect and slope preference in a saxicolous lichen community. Lichenologist 11:81–83

    Article  Google Scholar 

  • Pinokiyo A, Singh KP, Singh JS (2008) Diversity and distribution of lichens in relation to altitude within a protected biodiversity hot spot, north-east India. Lichenologist 40:47–62

    Article  Google Scholar 

  • Ponzetti JM, Mccune B (2001) Biotic soil crusts of Oregon’s shrub steppe: community composition in relation to soil chemistry, climate, and livestock activity. Bryologist 104:212–225

    Article  Google Scholar 

  • Rajakaruna N, Knudsen K, Fryday AM, O’dell RE, Pope N, Olday FR, Woolhouse S (2012) Investigation of the importance of rock chemistry for saxicolous lichen communities of the New Idria serpentinite mass, San Benito County, California. Lichenologist 44:695–714

    Article  Google Scholar 

  • Rodriguez JM, Estrabou C, Fenoglio R, Robiati F, Salas C, Quiroga G (2009) Recuperación post-fuego de la comunidad de líquenes epifitos en la provincia de Córdoba, Argentina. Acta Bot Bras 23:854–859

    Article  Google Scholar 

  • Rodriguez JM, Estrabou C, Truong C, Clerc P (2011) The saxicolous species of the genus Usnea subgenus Usnea (Parmeliaceae) in Argentina. Bryologist 114:504–525

    Article  Google Scholar 

  • Rubio C, Fernández E, Hidalgo M, Quilhot W (2002) Effects of solar UV-B radiation in the accumulation of rhizocarpic acid in a lichen species of alpin alpine zones of Chile. J Chil Chem Soc 47:67–72

    CAS  Google Scholar 

  • Scherrer D, Körner C (2010) Infra-red thermometry of alpine landscapes challenges climatic warming projections. Glob Change Biol 16:2602–2613

    Google Scholar 

  • Scherrer D, Körner C (2011) Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. J Biogeogr 38:406–416. doi:10.1111/j.1365-2699.2010.02407.x

    Article  Google Scholar 

  • Seaward MRD (2008) Environmental role of lichens. In: Nash TH III (ed) Lichen biology, 2nd edn. Cambridge University Press, Cambridge, pp 274–298

    Chapter  Google Scholar 

  • Sipman H (2005) Key to crustose, not foliicolous lichens. Identification key and literature guide to the genera of Lichenized Fungi (Lichens) in the Neotropics http://www.bgbm.org/sipman/keys/neokeyA.htm

  • Speed JDMM, Austrheim G, Hester AJ, Mysterud A (2011) Growth limitation of mountain birch caused by sheep browsing at the altitudinal treeline. For Ecol Manage 261:1344–1352. doi:10.1016/j.foreco.2011.01.017

    Article  Google Scholar 

  • Sylvester SP, Sylvester MD, Kessler M (2014) Inaccessible ledges as refuges for the natural vegetation of the high Andes. J Veg Sci 25:1225–1234. doi:10.1111/jvs.12176

    Article  Google Scholar 

  • Thomas CD (2011) Translocation of species, climate change, and the end of trying to recreate past ecological communities. Trends Ecol Evol 26:216–221. doi:10.1016/j.tree.2011.02.006

    Article  PubMed  Google Scholar 

  • Will-Wolf S, Esseen PA, Neitlich P (2002) Monitoring biodiversity and ecosystem function: forests. In: Nimis PL, Scheidegger C, Wolseley PA (eds) Monitoring with lichens-monitoring lichens. Kluwer Academic Publishers, London, pp 203–222

    Chapter  Google Scholar 

  • Wolf JHD (1993) Diversity patterns of epiphytic bryophytes and lichens. Ann Missouri Bot. Gard 80:928–960

    Article  Google Scholar 

  • Wolfgang E, Weber B, Burrows S, Steinkamp J, Büdel B, Meinrat OA, Pöschl U (2012) Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nat Geosci 5:459–462

    Article  Google Scholar 

Download references

Acknowledgements

We thank to Lucrecia Estigarribia, Cecilia Bartoloni, Guillermo Torres and Mayra Coppetti for help with fieldwork. CONICET and SECyT-UNC for the posdoc fellowship to JMR.

Author contributions

The authors JMR and DR conceived the field design and did the fieldwork, JMR and CE identified the species in the laboratory, JMR, EF and DR carried out the statistical analysis; JMR and EF performed the tables and figures; JMR, DR, EF and CE wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Manuel Rodriguez.

Additional information

Communicated by Pradeep Kumar Divakar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodriguez, J.M., Renison, D., Filippini, E. et al. Small shifts in microsite occupation could mitigate climate change consequences for mountain top endemics: a test analyzing saxicolous lichen distribution patterns. Biodivers Conserv 26, 1199–1215 (2017). https://doi.org/10.1007/s10531-017-1293-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-017-1293-0

Keywords

Navigation