Skip to main content

Advertisement

Log in

Genetic diversity of Enterolobium cyclocarpum in Colombian seasonally dry tropical forest: implications for conservation and restoration

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Enterolobium cyclocarpum is a characteristic legume tree species of seasonally dry tropical forests (SDTFs) of Mesoamerica and northern South America typically used in silvopastoral and agroforestry systems. Remaining populations of E. cyclocarpum in Colombia are severely fragmented owing to the highly degraded state of SDTF in the country, posing threats to both their in situ persistence and their usefulness as seed sources for future planting efforts. We genotyped E. cyclocarpum populations at nine sampling sites across a latitudinal gradient of SDTF in Colombia by means of eight nSSR markers to elucidate the species diversity distribution in the country. Our data suggest that a deep divide seems to have existed between Caribbean and Andean populations of E. cyclocarpum in Colombian SDTF that may date back to the last glacial maximum (~21,000 BP), or longer. However, we only found evidence of genetic differentiation between trees from the southern Cauca River valley and populations at more northern locations. All the latter populations showed signs of admixture which may be the result of human-influenced movement of germplasm, particularly after the introduction of cattle by European settlers. Most of the sampled sites showed heterozygosity scores close to Hardy–Weinberg expectations. Only the three southern-most populations displayed significantly positive values of inbreeding coefficient, potentially affecting their in situ maintenance and their use as seed sources. Based on our findings we identify priority areas for the in situ conservation of remaining E. cyclocarpum populations, and propose a strategy for sourcing of appropriate planting material for use in future tree planting efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. http://www.monumentaltrees.com/en/trees/enterolobiumcyclocarpum/records/.

References

  • Aguilar R, Ashworth L, Galetto L, Aizen MA (2006) Plant reproductive susceptibility to habitat fragmentation: review and synthesis through a meta-analysis. Ecol Lett 9:968–980

    Article  PubMed  Google Scholar 

  • Aguilar R, Quesada M, Ashworth L et al (2008) Genetic consequences of habitat fragmentation in plant populations: susceptible signals in plant traits and methodological approaches. Mol Ecol 17:5177–5188

    Article  PubMed  Google Scholar 

  • Alvarado-Solano DP, Ospina JTO (2015) Distribución Espacial Del Bosque Seco Tropical En El Valle Del Cauca, Colombia. Acta Biológica Colomb 20:141–153

    Article  Google Scholar 

  • Alzate-Marin AL, Guidugli MC, Soriani HH et al (2009) An efficient and rapid DNA minipreparation procedure suitable for PCR/SSR and RAPD analyses in tropical forest tree species. Braz Arch Biol Technol 52:1217–1224

    Article  CAS  Google Scholar 

  • Banda-R K, Delgado-Salinas A, Dexter KG et al (2016) Plant diversity patterns in neotropical dry forests and their conservation implications. Science 353:1383–1387

    Article  CAS  PubMed  Google Scholar 

  • Basey AC, Fant JB, Kramer AT (2015) Producing native plant materials for restoration: 10 rules to collect and maintain genetic diversity. Nativ Plants J 16:37–53

    Article  Google Scholar 

  • Braconnot P, Otto-bliesner B, Harrison S et al (2007) Results of PMIP2 coupled simulations of the Mid-Holocene and Last glacial maximum—Part 1: experiments and large-scale features. Clim Past 3:261–277

    Article  Google Scholar 

  • Breed MF, Stead MG, Ottewell KM et al (2013) Which provenance and where? Seed sourcing strategies for revegetation in a changing environment. Conserv Genet 14:1–10

    Article  Google Scholar 

  • Colpaert N, Cavers S, Bandou E et al (2005) Sampling tissue for DNA analysis of trees: trunk cambium as an alternative to canopy leaves. Silvae Genet 54:265–269

    Google Scholar 

  • de Abreu Moreira P, Brandão MM, de Araujo NH et al (2015) Genetic diversity and structure of the tree Enterolobium contortisiliquum (Fabaceae) associated with remnants of a seasonally dry tropical forest. Flora Morphol Distrib Funct Ecol Plants 210:40–46

    Google Scholar 

  • Dent EA, VonHoldt BM (2011) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Google Scholar 

  • Deutsches klimarechenzentrum (DKRZ) (1992) The ECHAM3 atmospheric general circulation model. Technical Report 6. Hamburg

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Duminil J, Mona S, Mardulyn P et al (2015) Late Pleistocene molecular dating of past population fragmentation and demographic changes in African rain forest tree species supports the forest refuge hypothesis. J Biogeogr 42:1443–1454

    Article  Google Scholar 

  • Ekamawanti HA, Setiadi Y, Sopandie D, Santosa DA (2013) The Role of arbuscular mycorrhizal fungus (Gigaspora margarita) on mercury and nutrients accumulation by Enterolobium cyclocarpum Seedlings. Microbiol Indones 7:167–176

    Article  Google Scholar 

  • Escalante EE (1985) Promising agroforestry systems in Venezuela. Agrofor Syst 3:209–221

    Article  Google Scholar 

  • Etter A (2015) La transformaciones del uso de la tierra y los ecosistemas durante el período colonial en Colombia. In: Meisel Roca A, Ramírez GMT (eds) La economía colonial de la Nueva Granada, primera edn. FCE, Banco de la República, Bogotá, pp 62–103

    Google Scholar 

  • Etter A, van Wyngaarden W (2000) Patterns of landscape transformation in colombia, with emphasis in the andean region. AMBIO A J Hum Environ 29:432–439

    Article  Google Scholar 

  • Etter A, McAlpine C, Possingham H (2008) Historical patterns and drivers of landscape change in colombia since 1500: a regionalized spatial approach. Ann Assoc Am Geogr 98:2–23

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frankel OH, Brown AHD, Burdon J (1995) The genetic diversity of wild plants. The conservation of plant biodiversity, First edit. University Press, Cambridge, pp 10–38

    Google Scholar 

  • Galluzzi G, Dufour D, Thomas E et al (2015) An integrated hypothesis on the domestication of bactris gasipaes. PLoS ONE 10:e0144644

    Article  PubMed  PubMed Central  Google Scholar 

  • García H, Corzo G, Isaacs P, Etter A (2014) Distribución y estado actual de los remanentes del bioma: de bosque seco tropical en Colombia: insumos para su gestión. In: Pizano C, García H (eds) El Bosque seco tropical en Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, pp 229–251

    Google Scholar 

  • Gonzales E, Hamrick JL, Smouse PE et al (2010) The impact of landscape disturbance on spatial genetic structure in the Guanacaste tree, Enterolobium cyclocarpum (Fabaceae). J Hered 101:133–143

    Article  CAS  PubMed  Google Scholar 

  • Hengl T, de Jesus JM, MacMillan R et al (2014) SoilGrids1 km—global soil information based on automated mapping. PLoS ONE 9:e105992

    Article  PubMed  PubMed Central  Google Scholar 

  • Hijmans RJ (2012) Cross-validation of species distribution models: removing spatial sorting bias and calibration with a null model. Ecology 93:679–688

    Article  PubMed  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL et al (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Janzen DH (1981) Enterolobium cyclocarpum seed passage rate and survival in horses, costa rican pleistocene seed dispersal agents. Ecology 62:593–601

    Article  Google Scholar 

  • Janzen DH (1982) Variation in average seed size and fruit seediness in a fruit crop of a guanacaste tree (Leguminosae: Enterolobium cyclocarpum) (Costa Rica). Am J Bot 69:1169–1178

    Article  Google Scholar 

  • Janzen DH (1983) Costa rican natural history. University of Chicago Press, Chicago

    Google Scholar 

  • Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405

    Article  CAS  PubMed  Google Scholar 

  • Jombart T, Devillard S, Dufour A, Pontier D (2008) Revealing cryptic spatial patterns in genetic variability by a new multivariate method. Heredity 101:92–103

    Article  CAS  PubMed  Google Scholar 

  • Kamvar ZN, Tabima JF, Grünwald NJ (2014) Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2:e281

    Article  PubMed  PubMed Central  Google Scholar 

  • Kindt R, Coe R (2005) Tree diversity analysis. A manual and software for common statistical methods for ecological biodiversity studies. World Agroforestry Centre (ICRAF), Nairobi

    Google Scholar 

  • Laborde JL, Corrales-Ferrayola I (2012) Direct seeding of Brosimum alicastrum SW. (Moraceae) and Enterolobium cyclocarpum Griseb. (Mimosaceae) in different habitats in the dry tropics of central Veracruz. Acta Bot Mex 100:107–134

    Article  Google Scholar 

  • Lagemann J, Heuveldop J (1983) Characterization and evaluation of agroforestry systems: the case of Acosta-Puriscal, Costa Rica. Agrofor Syst 1:101–115

    Article  Google Scholar 

  • Lowe AJ, Boshier D, Ward M et al (2005) Genetic resource impacts of habitat loss and degradation; reconciling empirical evidence and predicted theory for neotropical trees. Heredity 95:255–273

    Article  CAS  PubMed  Google Scholar 

  • Mahecha L (2002) El silvopastoreo: una alternativa de producción que disminuye el impacto ambiental de la ganadería bovina. Rev Colomb Ciencias Pecu 15:226–231

    Google Scholar 

  • Marchant R, Behling H, Berrio JC et al (2001) Mid- to Late-Holocene pollen-based biome reconstructions for Colombia. Quat Sci Rev 20:1289–1308

    Article  Google Scholar 

  • Marchant R, Behling H, Berrio JC et al (2002) Pollen-based biome reconstructions for Colombia at 3000, 6000, 9000, 12000, 15000, and 18000 14C yr ago: late quaternary tropical vegetation dynamics. J Quat Sci 17:113–129

    Article  Google Scholar 

  • Miles L, Newton AC, DeFries RS et al (2006) A global overview of the conservation status of tropical dry forests. J Biogeogr 33:491–505

    Article  Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci 70:3321–3323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novaes RM, Rodrigues JG, Lovato MB (2009) An efficient protocol for tissue sampling and DNA isolation from the stem bark of Leguminosae trees. Genet Mol Res 8:86–96

    Article  CAS  PubMed  Google Scholar 

  • Obando MF, Moya R (2013) Silviculture conditions and wood properties of Samanea saman and Enterolobium cyclocarpum in 19-year-old mixed plantations. For Syst 22:58–70

    Google Scholar 

  • Pennington RT, Prado DE, Pendry C (2000) Neotropical seasonally dry forests and Quaternary vegetation changes. J Biogeogr 27:261–273

    Article  Google Scholar 

  • Peters MB, Hagen C, Dorset W et al (2008) Isolation and characterization of microsatellite loci in the Guanacaste tree, Enterolobium cyclocarpum. Mol Ecol Resour 8:129–131

    Article  CAS  PubMed  Google Scholar 

  • Petit RJ, Aguinagalde I, Beaulieu JL et al (2003) Glacial refugia hotspots but not melting pots of genetic diversity. Science 80(300):1563–1565

    Article  Google Scholar 

  • Pizano C, González-M R, Gonzáles MF et al (2014) Las plantas de los bosques secos de Colombia. In: Pizano C, García H (eds) El Bosque seco tropical en Colombia. Instituto de Investigación de recursos Biológicos Alexander von Humboldt, Bogota, pp 49–93

    Google Scholar 

  • Prado D, Gibbs P (1993) Patterns of species distributions in the dry seasonal forests of South America. Ann Missouri Bot Gard 80:902–927

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ramírez Villegas J, Jarvis A (2010) Downscaling global circulation model outputs: the delta method. International Center for Tropical Agriculture (CIAT), Cali

    Google Scholar 

  • Reinoso-Pérez M (2014) Agroforestry: a viable alternative for sustainable agricultural production. Sci Agric 1:32–39

    Google Scholar 

  • Rocas NA (2002) Enterolobium cyclocarpum. In: Vozzo JA (ed) Tropical tree seed manual. United States Department of Agriculture Forest Service, USA, pp 449–451

    Google Scholar 

  • Rocha O, Aguilar G (2001) Variation in the breeding behavior of the dry forest tree Enterolobium cyclocarpum (Guanacaste) in Costa Rica. Am J Bot 88:1600–1606

    Article  CAS  PubMed  Google Scholar 

  • Rocha OJ, Lobo JA (1996) Genetic variation and differentiation among five populations of the Guanacaste tree (Enterolobium cyclocarpum Jacq.) in Costa Rica. Int J Plant Sci 157:234–239

    Article  Google Scholar 

  • Rodríguez-Sahagún A, Castellanos-Hernandez OA, Acevedo-Hernandez GJ, Excised A (2007) In vitro propagation of Enterolobium cyclocarpum (guanacaste) from nodal explants of axenic seedlings. E-Gnosis 5:1–14

    Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234

    Article  CAS  PubMed  Google Scholar 

  • Sgro CM, Lowe AJ, Hoffmann AA (2011) Building evolutionary resilience for conserving biodiversity under climate change. Evol Appl 4:326–337

    Article  PubMed  Google Scholar 

  • Thomas E, van Zonneveld M, Loo J et al (2012) Present Spatial Diversity Patterns of Theobroma cacao L. in the Neotropics Reflect Genetic Differentiation in Pleistocene Refugia Followed by Human-Influenced Dispersal. PLoS ONE 7:e47676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas E, Jalonen R, Loo J et al (2014) Genetic considerations in ecosystem restoration using native tree species. For Ecol Manag 333:66–75

    Article  Google Scholar 

  • Thomas E, Jalonen R, Loo J, Bozzano M (2015a) Avoiding failure in forest restoration: the importance of genetically diverse and site-matched germplasm. Unasylva 66:29–36

    Google Scholar 

  • Thomas E, Alcázar Caicedo C, McMichael CH et al (2015b) Uncovering spatial patterns in the natural and human history of Brazil nut (Bertholletia excelsa) across the Amazon Basin. J Biogeogr 42:1367–1382

    Article  Google Scholar 

  • Thomas E, Alcazar C, Moscoso LG et al (2017) The importance of species selection and seed sourcing in forest restoration for enhancing adaptive potential to climate change: Colombian tropical dry forest as a model. In: CBD Technical Series: Biodiversity and Climate Change. CBD secretariat, Montréal

  • Vina A, Cavelier J (1999) Deforestation Rates (1938–1988) of tropical lowland forests on the andean foothills of Colombia. Biotropica 31:31–36

    Google Scholar 

  • Werneck FP, Costa GC, Colli GR et al (2011) Revisiting the historical distribution of seasonally dry tropical forests: new insights based on palaeodistribution modelling and palynological evidence. Glob Ecol Biogeogr 20:272–288

    Article  Google Scholar 

  • Werneck FP, Nogueira C, Colli GR et al (2012) Climatic stability in the Brazilian Cerrado: implications for biogeographical connections of South American savannas, species richness and conservation in a biodiversity hotspot. J Biogeogr 39:1695–1706

    Article  Google Scholar 

  • Young AG, Boyle T, Brown T (1996) The population genetic consequences of habitat fragmentation for plants. Trends Ecol Evol 11:413–418

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Colombian companies Ecopetrol and Empresas Publicas de Medellin, the Government of the Colombian department of Antioquia, the CGIAR Fund Donors (http://www.cgiar.org/who-we-are/cgiar-fund/fund-donors-2) and the CGIAR research program on Forest Trees and Agroforestry for financial support. We are grateful to Jérôme Duminil and three anonymous reviewers for helpful comments on a previous version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Thomas.

Additional information

Communicated by Daniel Sanchez Mata.

This article belongs to the Topical Collection: Forest and plantation biodiversity.

Electronic supplementary materials

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas, E., Gil Tobón, C., Gutiérrez, J.P. et al. Genetic diversity of Enterolobium cyclocarpum in Colombian seasonally dry tropical forest: implications for conservation and restoration. Biodivers Conserv 26, 825–842 (2017). https://doi.org/10.1007/s10531-016-1274-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-016-1274-8

Keywords

Navigation