Skip to main content

Advertisement

Log in

Plant and arthropod diversity patterns of maize agro-ecosystems in two grassy biomes of South Africa

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Intensive, large-scale cultivation has led to a postulated decrease in biodiversity worldwide, which has been ascribed to fragmentation and degradation of natural habitat bordering crop fields. Maize is the most widely planted grain crop in Grassland and Savanna Biomes of South Africa, but the effect that crop production has on surrounding species diversity and composition is unknown. This study intends to address this knowledge gap by comparing diversity patterns and species assemblages between maize fields and margins of six localities in South Africa across two biomes for plants and associated arthropods. A total of 15,019 individuals and 824 native and exotic plant species were recorded and 39 497 individuals and 1 629 morpho-species for arthropods. Although biodiversity loss was apparent in maize fields, plant and arthropod diversity remained the same for rangeland at shorter (30–100 m) and longer (100–400 m) distances from maize fields, suggesting that distance from maize fields had no effect on biodiversity patterns beyond 30 m. Plant species assemblages were best correlated with agricultural disturbance while arthropod communities were mainly correlated with biome. Our results suggest that the crop field margins (30–100 m from field edge) were not species poor ecosystems, but were surprisingly rich in plant and arthropod diversity. Field margins may therefore be of conservation value in the agricultural landscape with a diversity of species supporting important ecosystem services.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. A complete list of all recorded plant and arthropod taxa is available in online resources 1 and 2.

References

  • Aizen MA, Garibaldi LA, Cunningham SA et al (2008) Long-term global trends in crop yield and production reveal no current pollination shortage but increasing pollinator dependency. Curr Biol 18(20):1572–1575

    Article  CAS  PubMed  Google Scholar 

  • Alomar Ò, Goula M, Albajes R (2002) Colonisation of tomato fields by predatory mirid bugs (Hemiptera: Heteroptera) in northern Spain. Agric Ecosyst Environ 89(1–2):105–115

    Article  Google Scholar 

  • Altieri MA (1999) The ecological role of biodiversity in agroecosystems. Agric Ecosyst Environ 74(1–3):19–31

    Article  Google Scholar 

  • Beckie HJ, Hall LM (2008) Simple to complex: modelling crop pollen-mediated gene flow. Plant Sci 175(5):615–628

    Article  CAS  Google Scholar 

  • Begon M, Townsend CR, Harper JL (2008) Ecology: From individuals to ecosystems. Blackwell Publishing Ltd, New York

    Google Scholar 

  • Bond WJ (1989) Describing and conserving biotic diversity. In: Huntley BJ (ed) Biotic diversity in Southern Africa: concepts and conservation. Oxford University Press, Cape Town, pp 2–18

    Google Scholar 

  • Boutin C, Jobin B (1998) Intensity of agricultural practices and effects on adjacent habitats. Ecol Appl 8(2):544–557

    Article  Google Scholar 

  • Boutin C, Baril A, Martin PA (2008) Plant diversity in crop fields and woody hedgerows of organic and conventional farms in contrasting landscapes. Agric Ecosyst Environ 123(1–3):185–193

    Article  Google Scholar 

  • Bundschuh R, Schmitz J, Bundschuh M et al (2012) Does insecticide drift adversely affect grasshoppers (Orthoptera: Saltatoria) in field margins? A case study combining laboratory acute toxicity testing with field monitoring data. Environ Toxicol Chem 31(8):1874–1879

    Article  CAS  PubMed  Google Scholar 

  • Caballero-López B, Blanco-Moreno JM, Pérez N et al (2010) A functional approach to assessing plant–arthropod interaction in winter wheat. Agric Ecosyst Environ 137(3–4):288–293

    Article  Google Scholar 

  • Carrière Y, Ellers-Kirk C, Cattaneo MG et al (2009) Landscape effects of transgenic cotton on non-target ants and beetles. Basic Appl Ecol 10(7):597–606

    Article  Google Scholar 

  • Chapin FS, Zavaleta ES, Eviner VT et al (2000) Consequences of changing biodiversity. Nature 405(6783):234–242

    Article  CAS  PubMed  Google Scholar 

  • Çilgi T, Jepson PC (1995) The risks posed by deltamethrin drift to hedgerow butterflies. Environ Pollut 87(1):1–9

    Article  PubMed  Google Scholar 

  • Clarke KR, Gorley RN (2006) PRIMER version 6: user manual/tutorial. PRIMER-E, Plymouth

    Google Scholar 

  • Cohen J (1988) Statistical power analysis for behavioural sciences, 2nd edn. Hillsdale, New York

    Google Scholar 

  • Culpepper AS (2006) Glyphosate-induced weed shifts 1. Weed Technol 20(2):277–281

    Article  Google Scholar 

  • Curry JP (1994) Grassland invertebrates: ecology, influence on soil fertility, and effects on plant growth. Chapman & Hall, London

    Google Scholar 

  • Darkoh MBK (2003) Agriculture and biodiversity in the drylands of Africa. In: Darkoh MBK, Rwomire A (eds) Human impact on environment and sustainable development in Africa. Ashgate Publishing Ltd., Hampshire, pp 253–276

    Google Scholar 

  • De Cauwer B, Reheul D, Nijs I et al (2006) Effect of margin strips on soil mineral nitrogen and plant biodiversity. Agron Sustain Dev 26(2):117–126

    Article  Google Scholar 

  • De Snoo GR, de Wit PJ (1998) Buffer zones for reducing pesticide drift to ditches and risks to aquatic organisms. Ecotoxicol Environ Saf 41(1):112–118

    Article  PubMed  Google Scholar 

  • De Snoo GR, van der Poll RJ (1999) Effect of herbicide drift on adjacent boundary vegetation. Agric Ecosyst Environ 73(1):1–6

    Article  Google Scholar 

  • Denys C, Tscharntke T (2002) Plant-insect communities and predator-prey ratios in field margin strips, adjacent crop fields, and fallows. Oecologia 130(2):315–324

    Article  Google Scholar 

  • Department of Environmental Affairs and Tourism (DEAT) (2005) South Africa’s National Biodiversity Strategy and Action Plan. http://www.info.gov.za/view/DownloadFileAction?id=175649. Accessed 20 Jun 2013

  • Devos Y, Demont M, Dillen K et al (2009) Coexistence of genetically modified (GM) and non-GM crops in the European Union: a review. Agron Sustain Dev 29(1):11–30

    Article  Google Scholar 

  • Dietrick E, Schlinger E, Garber M (1960) Vacuum cleaner principle applied in sampling insect populations in alfalfa fields by new machine method. Calif Agric 14(1):9–11

    Google Scholar 

  • Duelli P, Obrist MK (2003) Regional biodiversity in an agricultural landscape: the contribution of seminatural habitat islands. Basic Appl Ecol 4(2):129–138

    Article  Google Scholar 

  • Duelli P, Obrist MK, Schmatz DR (1999) Biodiversity evaluation in agricultural landscapes: above-ground insects. Agric Ecosyst Environ 74(1–3):33–64

    Article  Google Scholar 

  • Eckert J, Schuphan I, Hothorn L et al (2006) Arthropods on maize ears for detecting impacts of Bt maize on nontarget organisms. Environ Entomol 35(2):554–560

    Article  Google Scholar 

  • Elliott NC, Tao FL, Fuentes-Granados R et al (2006) D-vac sampling for predatory arthropods in winter wheat. Biol Control 38(3):325–330

    Article  Google Scholar 

  • Ellis S, Steyn H (2003) Practical significance (effect sizes) versus or in combination with statistical significance (p-values): research note. J S Afr Inst Man Sci 12(4):51–53

    Google Scholar 

  • Feber RE, Smith H, MacDonald DW (1996) The effects on butterfly abundance of the management of uncropped edges of arable fields. J Appl Ecol 33(5):1191–1205

    Article  Google Scholar 

  • Fridley J, Senft A, Peet R (2009) Vegetation structure of field margins and adjacent forests in agricultural landscapes of the North Carolina Piedmont. Castanea 74(4):327–339

    Article  Google Scholar 

  • Garibaldi LA, Steffan-Dewenter I, Kremen C et al (2011) Stability of pollination services decreases with isolation from natural areas despite honey bee visits. Ecol Lett 14(10):1062–1072

    Article  PubMed  Google Scholar 

  • Gove B, Power SA, Buckley GP et al (2007) Effects of herbicide spray drift and fertilizer overspread on selected species of woodland ground flora: comparison between short-term and long-term impact assessments and field surveys. J Appl Ecol 44(2):374–384

    Article  CAS  Google Scholar 

  • Gurr MG, Wratten SD, Snyder WE (eds) (2012) Biodiversity and insect pest management. Key issues for sustainable management. Wiley, West Sussex

    Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD et al (2001) PAST: Paleontological Statistics software package for education and data analysis. Palaeontol Electron 4(1):XIX–XXX

    Google Scholar 

  • Hamre LN, Halvorsen R, Edvardsen A et al (2010) Plant species richness, composition and habitat specificity in a Norwegian agricultural landscape. Agric Ecosyst Environ 138(3–4):189–196

    Article  Google Scholar 

  • Hancock GR, Mueller RO (eds) (2010) The reviewer’s guide to quantitative methods in the social sciences. Routledge, New York

    Google Scholar 

  • Hannon P (2012) African agriculture review 2012. http://www.capital.nedbank.co.za/nedbank/action/media/downloadFile?media_fileid=808. Accessed 21 June 2013

  • Hendrickx F, Maelfait J, Van Wingerden W et al (2007) How landscape structure, land-use intensity and habitat diversity affect components of total arthropod diversity in agricultural landscapes. J Appl Ecol 44(2):340–351

    Article  Google Scholar 

  • Hill DA, Fasham M, Tucker P et al (2005) Handbook of biodiversity methods: survey, evaluation and monitoring. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Hillebrand H, Bennett DM, Cadotte MW (2008) Consequences of dominance: a review of evenness effects on local and regional ecosystem processes. Ecology 89(6):1510–1520

    Article  PubMed  Google Scholar 

  • Hofmann F, Epp R, Kruse L et al (2010) Monitoring of Bt-Maize pollen exposure in the vicinity of the nature reserve Ruhlsdorfer Bruch in northeast Germany 2007 to 2008. Umweltwiss Schadst Forsch 22(3):229–251

    Article  Google Scholar 

  • Ingham DS, Samways MJ (1996) Application of fragmentation and variegation models to epigaeic invertebrates in South Africa. Conserv Biol 10(5):1353–1358

    Article  Google Scholar 

  • Khan ZR, Hassanali A, Pickett JA (2006) Managing polycropping to enhance soil system productivity: a case study from Africa. In: Uphoff N (ed) Biological approaches to sustainable soil systems. CRC Press, New York, pp 575–586

    Chapter  Google Scholar 

  • Kirchner TB (1977) The effects of resource enrichment on the diversity of plants and arthropods in a shortgrass prairie. Ecology 58(6):1334–1344

    Article  Google Scholar 

  • Kiss J, Penksza K, Toth F et al (1997) Evaluation of fields and field margins in nature production capacity with special regard to plant protection. Agric Ecosyst Environ 63(2):227–232

    Article  Google Scholar 

  • Kleijn D, Snoeijing GI (1997) Field boundary vegetation and the effects of agrochemical drift: botanical change caused by low levels of herbicide and fertilizer. J Appl Ecol 34(6):1413–1425

    Article  Google Scholar 

  • Klein A, Vaissiere BE, Cane JH et al (2007) Importance of pollinators in changing landscapes for world crops. Proc Roy Soc B 274(1608):303–313

    Article  Google Scholar 

  • Kremen C, Colwell RK, Erwin TL et al (1993) Terrestrial arthropod assemblages: their use in conservation planning. Conserv Biol 7(4):796–808

    Article  Google Scholar 

  • Leeson JY, Thomas AG, Sheard JW (2005) Weed distribution across field boundaries adjacent to roadsides. In: Thomas AG (ed) Field boundary habitats: implications for weed, insect and disease management. Canadian Weed Science Society, Québec

    Google Scholar 

  • Liira J, Schmidt T, Aavik T et al (2008) Plant functional group composition and large-scale species richness in European agricultural landscapes. J Veg Sci 19(1):3–14

    Article  Google Scholar 

  • Ma M (2008) Multi-scale responses of plant species diversity in semi-natural buffer strips to agricultural landscapes. Appl Veg Sci 11(2):269–278

    Article  Google Scholar 

  • Magurran AE (1988) Ecological diversity and its measurement. Princeton University Press, New Jersey

    Book  Google Scholar 

  • Magurran AE (2004) Measuring biological diversity. Blackwell Publishing, Oxford

    Google Scholar 

  • Marrs RH (1993) Soil fertility and nature conservation in europe: theoretical considerations and practical management solutions. In: Begon M, Fitter AH (eds) Advances in ecological research, vol 24. Academic Press, London

    Google Scholar 

  • Marshall EJP (1989) Distribution patterns of plants associated with arable field edges. J Appl Ecol 26(1):247–257

    Article  Google Scholar 

  • Marshall E, Arnold G (1995) Factors affecting field weed and field margin flora on a farm in Essex, UK. Landsc Urban Plan 31(1):205–216

    Article  Google Scholar 

  • Marshall EJP, Moonen AC (2002) Field margins in northern Europe: their functions and interactions with agriculture. Agric Ecosyst Environ 89(1–2):5–21

    Article  Google Scholar 

  • Matson PA, Parton WJ, Power AG et al (1997) Agricultural intensification and ecosystem properties. Science 277(5325):504–509

    Article  CAS  PubMed  Google Scholar 

  • McKinney ML, Lockwood JL (1999) Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol Evol 14(11):450–453

    Article  PubMed  Google Scholar 

  • McKone MJ, McLauchlan KK, Lebrun EG et al (2001) An edge effect caused by adult corn-rootworm beetles on sunflowers in tallgrass prairie remnants. Conserv Biol 15(5):1315–1324

    Article  Google Scholar 

  • Meissle M, Alvarez-Alfageme F, Malone LA et al (2012) Establishing a database of bio-ecological information on non-target arthropod species to support the environmental risk assessment of genetically modified crops in the EU. Supporting Publications, European Food Safety Authority (EFSA), Parma, Italy

    Google Scholar 

  • Messeguer J, Peñas G, Ballester J et al (2006) Pollen-mediated gene flow in maize in real situations of coexistence. Plant Biotechnol J 4(6):633–645

    Article  CAS  PubMed  Google Scholar 

  • Moolman J, Van den Berg J, Conlong D et al (2013) Species diversity and distribution of lepidopteran stem borers in South Africa and Mozambique. J Appl Entomol 137(9):641–720

    Article  Google Scholar 

  • Mucina L, Rutherford MC (2006) The vegetation of South Africa, Lesotho and Swaziland, Strelitzia, vol. 19. South African National Biodiversity Institute, Pretoria

  • Murdoch WW, Evans FC, Peterson CH (1972) Diversity and pattern in plants and insects. Ecology 53(5):819–829

    Article  Google Scholar 

  • Niedrist G, Tasser E, Lüth C et al (2009) Plant diversity declines with recent land use changes in European Alps. Plant Ecol 202(2):195–210

    Article  Google Scholar 

  • Norris RF, Kogan M (2000) Interactions between weeds, arthropod pests, and their natural enemies in managed ecosystems. Weed Sci 48(1):94–158

    Article  CAS  Google Scholar 

  • Oksanen J (2011) Multivariate analysis of ecological communities in R: vegan tutorial. R package version 1. http://phylodiversity.net/azanne/csfar/images/8/85/Vegan.pdf. Accessed 8 Dec 2014

  • Oleszczuk M, Ulikowska M, Kujawa K (2010) Effect of distance from forest edge on the distribution and diversity of spider webs in adjacent maize field. Pol J Ecol 58(4):759–768

    Google Scholar 

  • Oliver I, Beattie AJ (1996) Designing a cost-effective invertebrate survey: a test of methods for rapid assessment of biodiversity. Ecol Appl 6(2):594–607

    Article  Google Scholar 

  • Picker M, Griffiths C, Weaving A (2004) Field guide to insects of South Africa. Struik Publishers, Cape Town

    Google Scholar 

  • Pielou EC (1975) Ecological diversity. Wiley, New York

    Google Scholar 

  • Piessens K, Honnay O, Devlaeminck R et al (2006) Biotic and abiotic edge effects in highly fragmented heathlands adjacent to cropland and forest. Agric Ecosyst Environ 114(2):335–342

    Article  Google Scholar 

  • Pimentel D (1961) Species diversity and insect population outbreaks. Ann Entomol Soc Am 54(1):76–86

    Article  Google Scholar 

  • Ponce C, Bravo C, Alonso JC (2014) Effects of agri-environmental schemes on farmland birds: do food availability measurements improve patterns obtained from simple habitat models? Ecol Evol 4(14):2834–2847

    Article  PubMed Central  PubMed  Google Scholar 

  • Procheş Ş, Cowling RM (2007) Do insect distributions fit our biomes? S Afr J Sci 103(5):258–261

    Google Scholar 

  • Ratnadass A, Fernandes P, Avelino J et al (2012) Plant species diversity for sustainable management of crop pests and diseases in agroecosystems: a review. Agron Sustain Dev 32(1):273–303

    Article  Google Scholar 

  • Rodríguez JP, Barrera RR, Pearson DL (1998) A test for the adequacy of bioindicator taxa: are tiger beetles (Coleoptera: Cicindelidae) appropriate indicators for monitoring the degradation of tropical forests in Venezuela? Biol Conserv 83(1):69–76

    Article  Google Scholar 

  • Root RB (1973) Organization of a plant-arthropod association in simple and diverse habitats: the fauna of collards (Brassica Oleracea). Ecol Monogr 43(1):95–124

    Article  Google Scholar 

  • Rosi-Marshall EJ, Tank JL, Royer TV et al (2007) Toxins in transgenic crop byproducts may affect headwater stream ecosystems. Proc Natl Acad Sci USA 104(41):16204–16208

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Samways M (1984) A practical comparison of diversity indices based on a series of small agricultural ant communities. Phytophylactica 16(4):275–278

    Google Scholar 

  • Sanvido O, Widmer F, Winzeler M et al (2008) Definition and feasibility of isolation distances for transgenic maize cultivation. Transgenic Res 17(3):317–335

    Article  CAS  PubMed  Google Scholar 

  • Schadek U, Strauss B, Biedermann R et al (2009) Plant species richness, vegetation structure and soil resources of urban brownfield sites linked to successional age. Urban Ecosyst 12(2):115–126

    Article  Google Scholar 

  • Schaffers AP, Raemakers IP, Sýkora KV et al (2008) Arthropod assemblages are best predicted by plant species composition. Ecology 89(3):782–794

    Article  PubMed  Google Scholar 

  • Schellhorn NA, Sork VL (1997) The impact of weed diversity on insect population dynamics and crop yield in collards, Brassica oleraceae (Brassicaceae). Oecologia 111(2):233–240

    Article  Google Scholar 

  • Scholtz CH, Holm E (eds) (1985) Insects of Southern Africa. Butterworths, Durban

    Google Scholar 

  • Siebert SJ (2011) Patterns of plant species richness of temperate and tropical grassland in South Africa. Plant Ecol Evol 144(3):249–254

    Article  Google Scholar 

  • Siemann E (1998) Experimental tests of effects of plant productivity and diversity on grassland arthropod diversity. Ecology 79(6):2057–2070

    Article  Google Scholar 

  • Siemann E, Tilman D, Haarstad J et al (1998) Experimental tests of the dependence of arthropod diversity on plant diversity. Am Nat 152(5):738–750

    Article  CAS  PubMed  Google Scholar 

  • Southwood R, Henderson PA (2000) Ecological methods. Blackwell Science, Oxford

    Google Scholar 

  • Stary P, Pike KS (1999) Uses of beneficial insect diversity in agroecosystem management. In: Collins WW, Qualset CO (eds) Biodiversity in agroecosystems. CRC Press, Boca Raton

    Google Scholar 

  • Germishuizen G, Meyer NL, Steenkamp, Y, Keith, M (eds) (2006) A checklist of South African plants. Southern African Botanical Diversity Network Report No. 41. Sabonet, Pretoria

  • Strong DR, Lawton JH, Southwood R (1984) Insects on plants: community patterns and mechanisms. Cambridge University Press, Cambridge

    Google Scholar 

  • Symstad AJ, Siemann E, Haarstad J (2000) An experimental test of the effect of plant functional group diversity on arthropod diversity. Oikos 89(2):243–253

    Article  Google Scholar 

  • Szinicz G (2005) Biodiversity and arthropod abundance in the upland of Leyte, Philippines. Unpublished Ph.D. thesis, University of Hohenheim, München

  • Tainton NM (1999) Veld management in South Africa. University of Natal Press, Pietermaritzburg

    Google Scholar 

  • Ter Braak CJ (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67(5):1167–1179

    Article  Google Scholar 

  • Thomas CFG, Marshall EJP (1999) Arthropod abundance and diversity in differently vegetated margins of arable fields. Agric Ecosyst Environ 72(2):131–144

    Article  Google Scholar 

  • Tivy J (1990) Agricultural Ecology. Wiley, New York

    Google Scholar 

  • Van Oudtshoorn F, Brown L, Kellner K (2011) The effect of reseeding methods on secondary succession during cropland restoration in the highveld region of South Africa. Afr J Range For Sci 28(1):1–8

    Article  Google Scholar 

  • Viljoen C, Chetty L (2011) A case study of GM maize gene flow in South Africa. Environ Sci Eur 23(1):1–8

    Article  Google Scholar 

  • Wessels KJ, Reyers B, Van Jaarsveld AS et al (2003) Identification of potential conflict areas between land transformation and biodiversity conservation in north-eastern South Africa. Agric Ecosyst Environ 95(1):157–178

    Article  Google Scholar 

  • Wissinger SA (1997) Cyclic colonization in predictably ephemeral habitats: a template for biological control in annual crop systems. Biol Control 10(1):4–15

    Article  Google Scholar 

  • Yachi S, Loreau M (1999) Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc Natl Acad Sci USA 96(4):1463–1468

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work formed part of the Environmental Biosafety Cooperation Project between South Africa and Norway, coordinated by the South African National Biodiversity Institute. Financial support was also provided by GenØk-Centre of Biosafety, Norway, Norad project GLO-3450.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Botha.

Additional information

Communicated by Anurag chaurasia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 296 kb)

(PDF 680 kb)

Appendix

Appendix

Tables 4, 5, 6, 7, 8 and 9.

Table 4 Hierarchical Linear Modelling (HLM) analysis for differences in plant and arthropod richness and diversity index values between biomes (grassland and savanna) for distance from maize field (m) and interactions (between biome and distance)
Table 5 Effect sizes of Hierarchical Linear Modelling (HLM) analysis for comparisons between distances from maize field in terms of mean plant diversity index values
Table 6 Significant interaction effects between biome and distance from maize field in terms of plant species richness and Margalef’s species richness index values
Table 7 Effect sizes of Hierarchical Linear Modelling (HLM) analysis for comparisons between grassland and savanna in terms of mean index values at similar distances from maize field
Table 8 Adonis analysis, with nestedness of data in a transect taken into account, indicating significance of separation between treatments within biome for both plant and arthropod groups based on species composition
Table 9 Effect sizes of Hierarchical Linear Modelling (HLM) analysis for comparisons between distances from maize field in terms of mean arthropod diversity index values

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Botha, M., Siebert, S.J., van den Berg, J. et al. Plant and arthropod diversity patterns of maize agro-ecosystems in two grassy biomes of South Africa. Biodivers Conserv 24, 1797–1824 (2015). https://doi.org/10.1007/s10531-015-0901-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-015-0901-0

Keywords

Navigation