Skip to main content
Log in

Distribution and dispersal ecology of Lobaria pulmonaria in the largest primeval beech forest of Europe

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Occupancy and density of the epiphytic lichen L. pulmonaria were studied in the mountains of Uholka–Shyrokyi Luh (Ukraine), which include the largest primeval beech forest in Europe. The lichen occupancy was assessed on 314 plots laid out on a systematic grid. Additional data on population density were collected from 483 trees growing both, on and between these plots. The trees harbouring L. pulmonaria were distributed very sparsely within Uholka–Shyrokyi Luh, and occupy nearly 10 % of the studied perimeter. The generalized linear models showed that area of occupancy of L. pulmonaria was significantly influenced by altitude and canopy cover, whereas the species’ density was explained by habitat types and slope exposition. Population density is higher at the timberline than in the interior forest or on lowland meadows. We found a bimodal altitudinal distribution of L. pulmonaria, with maxima below and above 900 m a.s.l., where it prefers forest stands with loose or scattered canopy. The preferred position of L. pulmonaria on host tree trunks depends on stand density and allows the species to get the necessary level of insolation also in shaded sites where it grows higher up on the trunk than in open stands. While L. pulmonaria occupied trees with various diameters, juvenile individuals are more frequent on small trees, but mature lichen individuals are predominantly found on trees of average or large sizes. Fertile individuals require specific environmental conditions, which are available at intermediate altitudes, related with sheltered light, and horizontal terraces on slopes with eastern exposition. In general, the primeval beech forest of Uholka–Shyrokyi Luh harbours a high percentage of juvenile thalli of L. pulmonaria, which lack vegetative propagules. Mature individuals have a low frequency of fruit bodies and reproduce mainly with vegetative diaspores. We interpret this as an indication of a currently growing population of L. pulmonaria within the area. We hypothesize that transboundary air pollution has decreased the lichens’ population frequency and density and has altered the ratio of developmental stages in L. pulmonaria during earlier decades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723

    Article  Google Scholar 

  • Barry RG (1981) Mountain weather and climate. Elsevier B.V., University of Colorado, Boulder

    Google Scholar 

  • Bartok K (1988) Heavy metal distribution in several lichen species in a polluted area. Rev Roum Biol Ser Biol Veg 33:127–134

    CAS  Google Scholar 

  • Bengtsson J, Angelstam P, Elmqvist T et al (2003) Reserves, resilience and dynamic landscapes. Ambio 32:389–396

    PubMed  Google Scholar 

  • Bollmann K, Braunisch V (2013) To integrate or to segregate: balancing commodity production and biodiversity conservation in European forests. In: Kraus D, Krumm F (eds) Integrative approaches as an opportunity for the conservation of forest biodiversity. EFI, Joensuu, pp 18–31

    Google Scholar 

  • Brändli U-B, Dowhanytsch J (2003) Urwälder im Zentrum Europas. Ein Naturführer durch das Karpaten-Biosphärenreservat in der Ukraine. Hrsg. von der Eidgenössischen Forschungsanstalt WSL und Karpaten-Biosphärenreservat, Rachiw, Haupt Verlag, Bern, Stuttgart, Wien

  • Breckle SW (2002) Walter’s vegetation of the earth: the ecological systems of the geo-biosphere. Springer, Heidelberg

    Book  Google Scholar 

  • Bruun HH, Moen J, Virtanen R et al (2006) Effects of altitude and topography on species richness of vascular plants, bryophytes and lichens in alpine communities. J Veg Sci 17:37–46

    Article  Google Scholar 

  • Büdel B, Scheidegger C (2008) Thallus morphology and anatomy. In: Nash TH III (ed) Lichen biology. Cambridge University Press, Cambridge, pp 40–68

    Chapter  Google Scholar 

  • Bursak VP (1997) The climate. In: Movchan Ya, Hamor F, Sheliag-Sosonko Yu, Dudka I, Zahorodniuk I (eds) Biodiversity of the Carpathian Biosphere Reserve. Interecocentr, Kiev, pp 69–80

    Google Scholar 

  • Carlsson R, Nilsson K (2009) Status of the red-listed lichen Lobaria pulmonaria on the Åland Islands, SW Finland. Ann Bot Fenn 46:549–554

    Article  Google Scholar 

  • Commarmot B, Bachofen H, Bundziak Y et al (2005) Structures of virgin and managed beech forests in Uholka (Ukraine) and Sihlwald (Switzerland): a comparative study. For Snow Landsc Res 79:45–56

    Google Scholar 

  • Commarmot B, Brändli U-B, Hamor F, Lavnyy V (2013) Inventory of the Largest Primeval Beech Forest in Europe—a Swiss-Ukrainian scientific adventure. Swiss Federal Research Institute WSL, Birmensdorf; Ukrainian National Forestry University, L’viv; Carpathian Biosphere Reserve, Rakhiv

  • Coxson D, Stevenson S, Campbell J (2003) Short-term impacts of partial cutting on lichen retention and canopy microclimate in an Engelmann spruce—subalpine fir forest in north-central British Columbia. Can J For Res 33:830–841

    Article  Google Scholar 

  • Dal Grande F, Widmer I, Wagner HH, Scheidegger C (2012) Vertical and horizontal photobiont transmission within populations of a lichen symbiosis. Mol Ecol 21:3159–3172

    Article  Google Scholar 

  • Denison WC (2003) Apothecia and ascospores of Lobaria oregana and Lobaria pulmonaria investigated. Mycologia 95:513–518

    Article  PubMed  Google Scholar 

  • Donisa C, Mocanu R, Steinnes E, Vasu A (2000) Heavy metal pollution by atmospheric transport in natural soils from the northern part of eastern Carpathians. Water Air Soil Pollut 120:347–358

    Article  CAS  Google Scholar 

  • Dymytrova L, Nadyeina O, Hobi M, Scheidegger C (2014) Topographic and forest-stand variables determining epiphytic lichen diversity in the primeval beech forest in the Ukrainian Carpathians. Biodivers Conserv 23:1367–1394

    Article  Google Scholar 

  • Edman M, Eriksson AM, Villard MA (2008) Effects of selection cutting on the abundance and fertility of indicator lichens Lobaria pulmonaria and Lobaria quercizans. J Appl Ecol 45:26–33

    Article  Google Scholar 

  • Eilers JM, Rose CL, Sullivan TJ (1994) Status of air quality and effects of atmospheric pollutants on ecosystems in the Pacific Northwest Region of the National Park Service. US Department of the Interior, National Park Service

    Google Scholar 

  • Ertz D, Christnach C, Wedin M, Diederich P (2005) A world monograph of the genus Plectocarpon (Roccellaceae, Arthoniales). Bibl Lichenol 91:1–155

    Google Scholar 

  • Fritz Ö, Niklasson M, Churski M (2009) Tree age is a key factor for the conservation of epiphytic lichens and bryophytes in beech forests. Appl Veg Sci 12:93–106

    Article  Google Scholar 

  • Gauslaa Y (1994) Lobaria pulmonaria, an indicator of species-rich forests of long ecological continuity. Blyttia 52:119–128

    Google Scholar 

  • Groom MJ, Meffe GK, Carroll CR (2006) Principles of conservation biology. Sinauer Associates, Sunderland

    Google Scholar 

  • Gu WD, Kuusinen M, Konttinen T, Hanski I (2001) Spatial pattern in the occurrence of the lichen Lobaria pulmonaria in managed and virgin boreal forests. Ecography 24:139–150

    Article  Google Scholar 

  • Gustafsson L, Fiskesjo A, Ingelog T et al (1992) Factors of importance to some lichen species of deciduous broad-leaved woods in southern Sweden. Lichenologist 24:255–266

    Google Scholar 

  • Hakulinen R (1964) Die Flechtengattung Lobaria Schreb. in Ostfennoskandien. Ann Bot Fenn 1:202–213

    Google Scholar 

  • Hansson L (1997) Boreal ecosystems and landscape structures, functions and conservation of biodiversity. Ecol Bull 46:140–170

    Google Scholar 

  • Hilmo O, Rocha L, Holien H, Gauslaa Y (2011) Establishment success of lichen diaspores in young and old boreal rainforests: a comparison between Lobaria pulmonaria and L. scrobiculata. Lichenologist 43:241–255

    Article  Google Scholar 

  • Høistad F, Gjerde I (2011) Lobaria pulmonaria can produce mature ascospores at an age of less than 15 years. Lichenologist 43:495–497

    Article  Google Scholar 

  • Honegger R, Scherrer S (2008) Sexual reproduction in lichen-forming ascomycetes. In: Nash TH III (ed) Lichen biology. Cambridge University Press, Cambridge, pp 94–103

    Chapter  Google Scholar 

  • James PW, Hawksworth DL, Rose F (1977) Lichen communities in the British Isles: a preliminary conspectus. In: Seaward MRD (ed) Lichen ecology. Academic Press, London, pp 295–413

    Google Scholar 

  • Jüriado I, Liira J, Csencsics D et al (2011) Dispersal ecology of the endangered woodland lichen Lobaria pulmonaria in managed hemiboreal forest landscape. Biodivers Conserv 20:1803–1819

    Article  Google Scholar 

  • Jüriado I, Karu L, Liira J (2012) Habitat conditions and host tree properties affect the occurrence, abundance and fertility of the endangered lichen Lobaria pulmonaria in wooded meadows of Estonia. Lichenologist 44:263–276

    Article  Google Scholar 

  • Kalwij JM, Wagner HH, Scheidegger C (2005) Effects of stand-level disturbances on the spatial distribution of a lichen indicator. Ecol Appl 15:2015–2024

    Article  Google Scholar 

  • Kondratyuk S, Coppins B, Zelenko S et al (1998) Lobarion lichens as indicators of primeval forests in the Ukrainian part of the proposed trilateral reserve “Eastern Carpathians”. In: Kondratyuk SY, Coppins BJ (eds) Lobarion lichens as indicators of the primeval forests of the Eastern Carpathians. M.H. Kholodny Institute of Botany, Ukrainian Phytosociological Centre, Kiev, pp 64–79

    Google Scholar 

  • Körner C (2007) The use of ‘altitude’ in ecological research. Trends Ecol Evol 22:569–574

    Article  PubMed  Google Scholar 

  • Kuusinen M (1994) Epiphytic lichen diversity on Salix caprea in old-growth southern and middle boreal forests of Finland. Ann Bot Fenn 31:77–92

    Google Scholar 

  • Kuusinen M (1996) Cyanobacterial macrolichens on Populus tremula as indicators of forest continuity in Finland. Biol Conserv 75:43–49

    Article  Google Scholar 

  • Lacatusu R et al (2001) Soil pollution by acid rains and heavy metals in Zlatna region, Romania. In: Stott DE, Mohtar RH, Steinhardt GC (eds) Sustaining the global farm. Purdue University, West Lafayette, pp 817–820

    Google Scholar 

  • Lanz A (2011) Auswertung von Waldinventuren—Formeln mit Zahlenbeispielen. Arbeitspapier. Eidg. Forschungsanstalt für Wald, Dietikon

  • Lelieveld J, Berresheim H, Borrmann S et al (2002) Global air pollution crossroads over the Mediterranean. Science 298:794–799

    Article  CAS  PubMed  Google Scholar 

  • Mikhailova I, Trubina M, Vorobeichik E, Scheidegger C (2005) Influence of environmental factors on the local-scale distribution of cyanobacterial lichens: case study in the North Urals, Russia. Folia Cryptogam Est 41:45–54

    Google Scholar 

  • Mikryukov VS (2011) Population ecology of the epiphytic lichen Lobaria pulmonaria (L.) Hoffm. in Ural and Siberia. PhD Thesis, Yekatirinburg University of Plant and Animal Ecology

  • Mikryukov VS, Mikhailova IN, Scheidegger C (2010) Reproductive parameters of Lobaria pulmonaria (L.) Hoffm. in the Urals. Russ J Ecol 41:475–479. doi:10.1134/s1067413610060032

    Article  Google Scholar 

  • Nascimbene J, Benesperi R, Brunialti G et al (2013) Patterns and drivers of β-diversity and similarity of Lobaria pulmonaria communities in Italian forests. J Ecol 101:493–505

    Article  Google Scholar 

  • Nilsson S, Arup U, Baranowski R, Ekman S (1995) Tree-dependent lichens and beetles as indicators in conservation forests. Conserv Biol 9:1208–1215

    Article  Google Scholar 

  • Öckinger E, Nilsson SG (2010) Local population extinction and vitality of an epiphytic lichen in fragmented old-growth forest. Ecology 91:2100–2109

    Article  PubMed  Google Scholar 

  • Öckinger E, Niklasson M, Nilsson SG (2005) Is local distribution of the epiphytic lichen Lobaria pulmonaria limited by dispersal capacity or habitat quality? Biodivers Conserv 14:759–773

    Article  Google Scholar 

  • Otalora MG, Martinez I, Belinchon R et al (2011) Remnants fragments preserve genetic diversity of the old forest lichen Lobaria pulmonaria in a fragmented Mediterranean mountain forest. Biodivers Conserv 20:1239–1254

    Article  Google Scholar 

  • Oulehle F, Hleb R, Houška J, Šamonil P, Hofmeister J, Hruška J (2010) Anthropogenic acidification effects in primeval forests in the Transcarpathian Mts., western Ukraine. Sci Total Environ 408:856–864

    Article  CAS  PubMed  Google Scholar 

  • Pannewitz S, Schroeter B, Scheidegger C, Kappen L (2003) Habitat selection and light conditions: a field study with Lobaria pulmonaria. Bibl Lichenol 86:281–297

    Google Scholar 

  • Pickett STA, Thompson JN (1978) Patch dynamics and the design of nature reserves. Biol Conserv 13:27–37

    Article  Google Scholar 

  • Poelt J (1987) Das Gesetz der relativen Standortskonstanz bei den Flechten Botanische Jahrbücher. Systematik 108:363–371

    Google Scholar 

  • Purvis W, Williamson B, Bartók K, Rusu A-M, Dubbin B (1999) Accumulation of particulates (PM10’s) by lichens in the vicinity of an ore processing plant, Zlatna, Romania. In: Anonymous (ed) International conference on lichen conservation biology, Licons. Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf

  • Pykälä J (2004) Effects of new forestry practices on rare epiphytic macrolichens. Conserv Biol 18:831–838

    Article  Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/. Accessed 1 Sept 2013

  • Roberts DW (1986) Ordination on the basis of fuzzy set theory. Vegetatio 66:123–131

    Article  Google Scholar 

  • Rose F (1976) Lichenological indicators of age and environmental continuity in woodlands. In: Brown DH, Hawksworth DL, Bailey RH (eds) Lichenology: progress and problems. Academic Press, London, pp 279–307

    Google Scholar 

  • Rose F (1988) Phytogeographical and ecological aspects of Lobarion communities in Europe. Bot J Linn Soc 96:69–79

    Article  Google Scholar 

  • Rose F (1992) Temperate forest management: its effects on bryophyte and lichen floras and habitats. In: Bates JW, Farmer A (eds) Bryophytes and lichens in a changing environment. Clarendon Press, Oxford, pp 211–233

    Google Scholar 

  • Scheidegger C (1991) Phytogeography of the lichen genus Buellia (Physciaceae, Lecanorales) in Mediterranean Europe. Bot Chron 10:211–220

    Google Scholar 

  • Scheidegger C (1995) Early development of transplanted isidioid soredia of Lobaria pulmonaria in an endangered population. Lichenologist 27:361–374

    Google Scholar 

  • Scheidegger, Goward T (2002) Monitoring lichens for conservation: Red Lists and conservation action plans. In: Nimis PL, Scheidegger C, Wolseley P (eds) Lichen monitoring—monitoring lichens. Kluwer, Dordrecht, pp 163–181

    Chapter  Google Scholar 

  • Scheidegger C, Schroeter B (1995) Effects of ozone fumigation on epiphytic macrolichens—ultrastructure, CO2 gas-exchange and chlorophyll fluorescence. Environ Pollut 88:345–354

    Article  CAS  PubMed  Google Scholar 

  • Scheidegger C, Werth S (2009) Conservation strategies for lichens: insights from population biology. Fungal Biol Rev 23:55–66

    Article  Google Scholar 

  • Scheidegger C, Flachsmann S, Zoller S, Frey B (1997) Naturschutzbiologie bei Flechten: Konzepte und Projekte. In: Schöller H (ed) Flechten: Geschichte, Biologie, Systematik, Ökologie, Naturschutz und kulturelle Bedeutung; Begleitheft zur Ausstellung “Flechten - Kunstwerke der Natur”. Kleine Senckenbergische Reihe Nr. 27. Kramer, Frankfurt am Main, pp 167–175

  • Scheidegger C, Bergamini A, Bürgi M et al (2010) Waldwirtschaft. In: Lachat T, Pauli D, Gonseth Y, Klaus G, Scheidegger C, Vittoz P, Walter T (eds) Wandel der Biodiversität in der Schweiz seit 1900 – ist die Talsohle erreicht?. Haupt, Bern, pp 124–160

    Google Scholar 

  • Scheidegger C, Bilovitz PO, Werth S, Widmer I, Mayrhofer H (2012) Hitchhiking with forests: population genetics of the epiphytic lichen Lobaria pulmonaria in primeval and managed forests in southeastern Europe. Ecol Evol 2:2223–2240. doi:10.1002/ece3.341

    Article  PubMed Central  PubMed  Google Scholar 

  • Schoener TW (1975) Presence and absence of habitat shift in some widespread lizard species. Ecol Monogr 45:233–258. doi:10.2307/1942423

    Article  Google Scholar 

  • Šebesta J, Šamonil P, Lacina J, Oulehle F, Houška J, Buček A (2011) Acidification of primeval forests in the Ukraine Carpathians: vegetation and soil changes over six decades. For Ecol Manag 262:1265–1279

    Article  Google Scholar 

  • Shparyk YS, Parpan VI (2004) Heavy metal pollution and forest health in the Ukrainian Carpathians. Environ Pollut 130:55–63. doi:10.1016/j.envpol.2003.10.030

    Article  CAS  PubMed  Google Scholar 

  • Singh G, Dal Grande F, Cornejo C, Schmitt I, Scheidegger C (2012) Genetic basis of self-incompatibility in the lichen-forming fungus Lobaria pulmonaria and skewed frequency distribution of mating-type idiomorphs: implications for conservation. PLoS ONE 7:e51402. doi:10.1371/journal.pone.0051402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stofer S, Scheidegger C, Clerc P et al (2008) SwissLichens – Webatlas der Flechten der Schweiz/Modul Verbreitung (Version 2 vom 3. 07. 2009). http://www.swisslichens.ch. Accessed 27 Nov 2012

  • Tibell L (1992) Crustose lichens as indicators of forest continuity in boreal coniferous forests. Nord J Bot 12:427–450

    Article  Google Scholar 

  • Trotsiuk V, Hobi ML, Commarmot B (2012) Age structure and disturbance dynamics of the relic virgin beech forest Uholka (Ukrainian Carpathians). For Ecol Manag 265:181–190. doi:10.1016/j.foreco.2011.10.042

    Article  Google Scholar 

  • Van Teeffelen AJA, Vos CC, Opdam P (2012) Species in a dynamic world: consequences of habitat network dynamics on conservation planning. Biol Conserv 153:239–253. doi:10.1016/j.biocon.2012.05.001

    Article  Google Scholar 

  • Vestreng V, Myhre G, Fagerli H, Reis S, Tarrason L (2007) Twenty-five years of continuous sulphur dioxide emission reduction in Europe. Atmos Chem Phys 7:3663–3681

    Article  CAS  Google Scholar 

  • Walser JC (2004) Molecular evidence for limited dispersal of vegetative propagules in the epiphytic lichen Lobaria pulmonaria. Am J Bot 91:1273–1276

    Article  PubMed  Google Scholar 

  • Werth S, Wagner HH, Gugerli F, Holderegger R, Csencsics D, Kalwij JM, Scheidegger C (2006) Quantifying dispersal and establishment limitation in a population of an epiphytic lichen. Ecology 87:2037–2046

    Article  PubMed  Google Scholar 

  • Werth S, Gugerli F, Holderegger R, Wagner HH, Csencsics D, Scheidegger C (2007) Landscape-level gene flow in Lobaria pulmonaria, an epiphytic lichen. Mol Ecol 16:2807–2815

    Article  PubMed  Google Scholar 

  • Whittet R, Ellis CJ (2013) Critical tests for lichen indicators of woodland ecological continuity. Biol Conserv 168:19–23. doi:10.1016/j.biocon.2013.09.011

    Article  Google Scholar 

  • Widmer I, Dal Grande F, Excoffier L, Holderegger R, Keller C, Mikryukov VS, Scheidegger C (2012) European phylogeography of the epiphytic lichen fungus Lobaria pulmonaria and its green algal symbiont. Mol Ecol 21:5827–5844. doi:10.1111/mec.12051

    Article  PubMed  Google Scholar 

  • Wirth V (1995) Die Flechten Baden-Württembergs. Eugen Ulmer, Stuttgart

    Google Scholar 

  • Wolseley PA (1991) Observations on the composition and distribution of the Lobarion in forests of South East Asia. In: Galloway DJ (ed) Tropical lichens: their systematics, conservation and ecology, vol 43, Systematics Association special volumes. Clarendon Press, Oxford, pp 217–243

  • Yoshimura I (1971) The genus Lobaria of Eastern Asia. J Hattori Bot Lab 34:231–364

    Google Scholar 

  • Zoller S, Lutzoni F, Scheidegger C (1999) Genetic variation within and among populations of the threatened lichen Lobaria pulmonaria in Switzerland and implications for its conservation. Mol Ecol 8:2049–2059

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are very indebted to Brigitte Commarmot and Martina Hobi for the critical revision of this manuscript, and Silvia Dingwall (all Birmensdorf, Switzerland) for improving the English. We thank Brigitte Commarmot (Birmensdorf, Switzerland), Ruedi Iseli and Beate Hasspacher (Olten, Switzerland), as well as Mykola Korol (Lviv, Ukraine) for their support during exploration of this project. We also grateful to Vasyl Naumovich (Kherson, Ukraine), Olexander Ordynets (Kharkiv, Ukraine), Volodymyr Savchyn (Lviv, Ukraine) and colleagues from the Carpathian Biosphere Reserve and Ukrainian National Forestry University for assisting with the field work. This Project was funded by the Swiss State Secretariat for Education, Research and Innovation (SERI).

Conflict of interest

There is no conflict of interest declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Nadyeina.

Additional information

Communicated by Pradeep Kumar Divakar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nadyeina, O., Dymytrova, L., Naumovych, A. et al. Distribution and dispersal ecology of Lobaria pulmonaria in the largest primeval beech forest of Europe. Biodivers Conserv 23, 3241–3262 (2014). https://doi.org/10.1007/s10531-014-0778-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-014-0778-3

Keywords

Navigation