Skip to main content

Advertisement

Log in

Phylogeography and founder effect of the endangered Corsican red deer (Cervus elaphus corsicanus)

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Red deer (n = 149) from eight geographical locations, including the endangered endemic populations from the Tyrrhenian islands (Sardinia and Corsica), were analysed at eight polymorphic microsatellite loci. Two questions were addressed: (1) Is there a founder effect in the Corsican population, which was reintroduced to the island using Sardinian deer after the species’ extinction on Corsica? (2) What is the origin of the Tyrrhenian or Corsican red deer (Cervus elaphus corsicanus)? Our results showed signs of a founder effect for the red deer on Corsica in that these deer showed differentiation from the Sardinian population as measured by FST values, assignment tests (with and without a priori definition of populations) and individual-based dendrograms. Genetic variability, however, did not differ significantly between the two populations. With respect to the phylogeography of C. e. corsicanus we found that both deer from North-Africa and Mesola on the Italian mainland were genetically close to the Corsican red deer, but phylogenetic trees based on genetic distances were only poorly supported statistically. Among all populations studied the Mesola red deer showed the lowest distance values from Corsican red deer and yielded allele frequencies that were more similar to those of C. e. corsicanus than were those of North-African red deer. These results are in line with recent palaeontological and archaeozoological findings which suggest that the Corsican red deer is derived from small Italian red deer introduced from the mainland to Sardinia and Corsica during the Late Neolithic and just before the beginning of Classical Antiquity, respectively. They also suggest a possible recent introduction of Tyrrhenian red deer to North-Africa (rather than the other way around), thus accounting for the close genetic relationship (especially based on mitochondrial DNA) that has repeatedly been found between C. e. corsicanus and C. e. barbarus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Avise JC (1989) Gene trees and organismal histories: a phylogenetic approach to population biology. Evolution 43:1192–1208

    Article  Google Scholar 

  • Avise JC (2000) Phylogeography. The history and formation of species. Harvard University Press, Cambridge

    Google Scholar 

  • Banwell B (1998) Description of Cervus elaphus corsicanus. IUCN Deer Spec Group Newslett 14:9

    Google Scholar 

  • Blondel J, Vigne J-D (1993) Space, time and man as determinants of diversity of birds and mammals in the mediterranean region. In: Ricklefs RE, Schluter D (eds) Species diversity in ecological communities. Historical and geographical perspectives. Chicago University Press, Chicago

    Google Scholar 

  • Bonnet A, Thévenon S, Maudet F, Maillard JC (2002) Efficiency of semi-automated fluorescent multiplex PCRs with 11 microsatellite markers for genetic studies of deer populations. Anim Genet 33:343–350

    Article  PubMed  CAS  Google Scholar 

  • Bowcock AM, Ruiz-Linares A, Tomfohrde J, Minch E, Kidd JR, Cavalli-Sforza LL (1994) High resolution human evolutionary trees with polymorphic microsatellites. Nature 368:455–457

    Article  PubMed  CAS  Google Scholar 

  • Cavalli-Sforza LL, Edwards AWF (1967) Phylogenetic analysis: models and estimation procedures. Am J Hum Genet 19:233–257

    PubMed  CAS  Google Scholar 

  • Cheylan M (1991) Patterns of Pleistocene turnover, current distribution and speciation among Mediterranean mammals. In: Groves RH, Di Castri F (eds) Biogeography of Mediterranean invasions. Cambridge University Press, Cambridge

    Google Scholar 

  • Cornuet JM, Piry S, Luikart G, Estoup A, Solignac M (1999) New methods employing multilocus genotypes to select or exclude populations as origins of individuals. Genetics 153:1989–2000

    PubMed  CAS  Google Scholar 

  • Costa L, Vigne J-D, Bocherens H, Desse-Berset N, Heintz C, de Lanfranchi F, Magdeleine J, Ruas M-P, Thiébault S, Tozzo C (2003) Early settlement on Tyrrhenian islands (8th millennium cal. BC): mesolithic adaptation to local resources in Corsica and Northern Sardinia. In: Larsson L, Kindgre H, Knutsson K, Loeffler D, Åkerlund A (eds) Mesolithic on the Mour. Oxbow Books, Oxford

    Google Scholar 

  • Cronin MA (1993) Mitochondrial DNA in wildlife taxonomy and conservation biology: cautionary notes. Wildlife Soc Bull 21:339–348

    Google Scholar 

  • Davis SJM (1987) The archaeology of animals. Batsford Ltd., London

    Google Scholar 

  • Dobson M (1998) Mammal distributions in the western Mediterranean: the role of human intervention. Mammal Rev 28:77–88

    Article  Google Scholar 

  • Dolan JM (1988) A deer of many lands—a guide to the subspecies of the red deer Cervus elaphus L. Zoonooz, LXII(10):4–34

    Google Scholar 

  • Estonba A, Solís A, Iriondo M, Sanz-Martín MJ, Pérez-Suárez G, Markov G, Palacios F (2006) The genetic distinctiveness of the three Iberian hare species: Lepus europaeus, L. granatensis, and L. castroviejoi. Mamm Biol 71:52–59

    Article  Google Scholar 

  • Ewen KR, Bahlo M, Treloar SA, Levinson DF, Mowry B, Barlow JW, Foote SJ (2000) Identification and analysis of error types in high-throughput genotyping. Am J Hum Genet 67:727–736

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1993) PHYLIP (Phylogeny Inference Package) version 3.5c. Distributed by the author. Department of Genetics, University of Washington, Seattle

    Google Scholar 

  • Feulner PGD, Bielfeldt W, Zachos FE, Bradvarovic J, Eckert I, Hartl GB (2004) Mitochondrial DNA and microsatellite analyses of the genetic status of the presumed subspecies Cervus elaphus montanus (Carpathian red deer). Heredity 93:299–306

    Article  PubMed  CAS  Google Scholar 

  • Flerov CC (1952) Musk deer and deer. In: Fauna of the USSR. Mammals, vols 1, 2. Academy of Sciences, Moscow

    Google Scholar 

  • Fonzo O (1987) Reperti faunistici in Marmilla e Campidano nell’Età del Bronzo e nella prima Età del Ferro. In: La Sardegna nel Mediterraneo tra il secondo et il primo millennio a.C. Amministrazione Provinciale, Cagliari

    Google Scholar 

  • Funk DJ, Omland KE (2003) Species-level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA. Ann Rev Ecol Evol Syst 34:397–423

    Article  Google Scholar 

  • Geist V (1998) Deer of the world. Their evolution, behavior, and ecology. Stackpole Books, Mechanicsburg

    Google Scholar 

  • Gonzalez G, Kidjo N (2002) A research project on conservation biology of Corsican red deer (Cervus e. corsicanus). IUCN Deer Spec Group Newslett 17:1–3

    Google Scholar 

  • Goodman SJ, Tamata HB, Wilson R, Nagata J, Tatsuzawa S, Swanson GM, Pemberton JM, McCullough DR (2001) Bottlenecks, drift and differentiation: the population structure and demographic history of sika deer (Cervus nippon) in the Japanese archipelago. Mol Ecol 10:1357–1370

    Article  PubMed  CAS  Google Scholar 

  • Goudet J (1995) FSTAT (version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486

    Google Scholar 

  • Groves CP, Grubb P (1987) Relationships of living deer. In: Wemmer CE (ed) Biology and management of the Cervidae. Smithsonian Institution Press, Washington

    Google Scholar 

  • Hadjouis D (1990) Megaceroides algericus (Lydekker, 1890), du gisement des Phacochères (Alger, Algérie). Etude critique de la position systématique des Mégacéroides. Quaternaire 1:247–258

    Google Scholar 

  • Hajji GM, Zachos FE, Charfi-Cheikrouha F, Hartl GB (2007) Conservation genetics of the imperilled Barbary red deer in Tunisia. Anim Conserv 10:229–235

    Article  Google Scholar 

  • Hartl GB, Nadlinger K, Apollonio M, Markov G, Klein F, Lang G, Findo S, Markowski J (1995) Extensive mitochondrial-DNA differentiation among European Red deer (Cervus elaphus) populations: implications for conservation and management. Z Saeugetierkd 60:41–52

    Google Scholar 

  • Hartl GB, Zachos F, Nadlinger K (2003) Genetic diversity in European red deer (Cervus elaphus L.): anthropogenic influences on natural populations. CR Biologies 326:S37–S42

    Article  Google Scholar 

  • Hmwe SS, Zachos FE, Eckert I, Lorenzini R, Fico R, Hartl GB (2006a) Conservation genetics of the endangered red deer from Sardinia and Mesola with further remarks on the phylogeography of Cervus elaphus corsicanus. Biol J Linn Soc 88:691–701

    Article  Google Scholar 

  • Hmwe SS, Zachos FE, Sale JB, Rose HR, Hartl GB (2006b) Genetic variability and differentiation in red deer (Cervus elaphus) from Scotland and England. J Zool 270:479–487

    Article  Google Scholar 

  • Kalz B, Jewgenow K, Fickel J (2006) Structure of an otter (Lutra lutra) population in Germany–results of DNA and hormone analyses from faecal samples. Mamm Biol 71:321–335

    Article  Google Scholar 

  • Kidjo N, Feracci G, Bideau E, Gonzalez G, Marchand B, Aulagnier S (2006) Extinction and reintroduction of the Corsican red deer in Corsica. In: Abstracts of the 1st European congress of conservation biology “Diversity for Europe”, Eger, Hungary 22–26 August 2006

  • Kowalski K, Rzebik-Kowalska B (1991) Mammals of Algeria. Polish Academy of Science, Wroklaw

    Google Scholar 

  • Krumbiegel I (1982) Der Korsika-Rothirsch (Cervus elaphus corsicanus, Erxleben 1777) und sein Biotop. Saeugetierkdl Mitt 30:281–286

    Google Scholar 

  • Lorenzini R, Fico R, Mattioli S (2005) Mitochondrial DNA evidence for a genetic distinction of the native red deer of Mesola, northern Italy, from the Alpine populations and the Sardinian subspecies. Mamm Biol 70:187–198

    Article  Google Scholar 

  • Lovari S, Cuccus P, Murgia A, Murgia C, Soi F, Plantamura G (2007) Space use, habitat selection and browsing effects of red deer in Sardinia. Ital J Zool 74:179–189

    Article  Google Scholar 

  • Ludt CJ, Schroeder W, Rottmann O, Kuehn R (2004) Mitochondrial DNA phylogeography of red deer (Cervus elaphus). Mol Phylogenet Evol 31:1064–1083

    Article  PubMed  CAS  Google Scholar 

  • Lydekker R (1898) The deer of all lands. A history of the family Cervidae living and extinct. Rowland Ward, London

    Google Scholar 

  • Masseti M (1996) The postglacial diffusion of the genus Dama Frisch, 1775, in the Mediterranean region. Suppl Ric Biol Selvag 25:7–29

    Google Scholar 

  • Masseti M (1998) Holocene and anthropochorous wild mammals of the Mediterranean islands. Anthropozoologica 28:3–20

    Google Scholar 

  • Masseti M (2002a) Uomini e (non solo) topi. Firenze University press, Florence

    Google Scholar 

  • Masseti M (2002b) The red deer of Lampedusa (Pelagian islands, Italy): literary references and osteological evidence. Arch Nat Hist 29:51–66

    Google Scholar 

  • Mattioli S (1990) Red deer in the Italian peninsula with particular reference to the Po delta population. Deer 8:95–98

    Google Scholar 

  • Mattioli S, Fico R, Lorenzini R, Nobili G (2003) Mesola red deer: physical characteristics, population dynamics and conservation perspectives. Hystrix Ital J Mammal 14:87–94

    Google Scholar 

  • Mattioli S, Meneguz PG, Brugnoli A, Nicoloso S (2001) Red deer in Italy: recent changes in range and numbers. Hystrix Ital J Mammal 12:27–35

    Google Scholar 

  • Mayr E (1963) Animal species and evolution. The Belknap Press of Harvard University Press, Cambridge

    Google Scholar 

  • Minch E. Ruiz-Linares A, Goldstein D, Feldman M, Cavalli-Sforza LL (1995) MICROSAT (version 1.5b): a computer program for calculating various statistics on microsatellite allele data. Stanford University Press, Stanford

    Google Scholar 

  • Nei M (1972) Genetic distance between populations. Am Nat 106:283–292

    Article  Google Scholar 

  • Nussey DH, Pemberton J, Donald A, Kruuk LEB (2006) Genetic consequences of human management in an introduced island population of red deer (Cervus elaphus). Heredity 97:56–65

    Article  PubMed  CAS  Google Scholar 

  • Pamilo P, Nei M (1988) Relationships between gene trees and species trees. Mol Biol Evol 5:568–583

    PubMed  CAS  Google Scholar 

  • Pemberton JM, Slate J, Bancroft DR, Barrett JA (1995) Nonamplifying alleles at microsatellite loci: a caution for parentage and population studies. Mol Ecol 4:249–252

    PubMed  CAS  Google Scholar 

  • Pereira E (2001) Cervus elaphus rossii (Mammalia, Artiodactyla), a new endemic sub-species from the middle Pleistocene in Corsica. Palaeovertebrata 30:189–213

    Google Scholar 

  • Piry S, Alapetite A, Cornuet J-M, Paetkau D, Baudouin L, Estoup A (2004) GENECLASS2: a software for genetic assignment and first-generation migrant detection. J Hered 95:536–539

    Article  PubMed  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Redeker S, Andersen LW, Pertoldi C, Madsen AB, Jensen TS, Jørgensen JM (2006) Genetic structure, habitat fragmentation and bottlenecks in Danish bank voles (Clethrionomys glareolus). Mamm Biol 71:144–158

    Article  Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Sambrook J, Russel DV (2001) Molecular cloning: a laboratory manual. Cold Spring Harbour Press, New York

    Google Scholar 

  • Scandura M, Iacolina L, Ben Slimen H, Suchentrunk F, Apollonio M (2007) Mitochondrial CR-1 variation in Sardinian hares and its relationships with other old world hares (Genus Lepus). Biochem Genet 45:305–323

    Article  PubMed  CAS  Google Scholar 

  • Schneider S, Roessli D, Excoffier L (2000) Arlequin ver 2.000: a software for population genetics data analysis. Genetics and Biometry Laboratory, University of Geneva, Switzerland

    Google Scholar 

  • Schüle W (1993) Mammals, vegetation and the initial human settlement of the Mediterranean islands: a palaeoecological approach. J Biogeogr 20:399–412

    Article  Google Scholar 

  • Shackleton NJ (1987) Oxygen isotopes, ice volume and sea level. Quaternary Sci Rev 6:183–190

    Article  Google Scholar 

  • Skog A, Zachos FE, Rueness EK, Feulner PGD, Mysterud A, Langvatn R, Lorenzini R, Hmwe SS, Lehoczky I, Hartl GB, Stenseth NC, Jakobsen KS (submitted) Phylogeography of red deer (Cervus elaphus) in Europe

  • Sommer RS, Nadachowski A (2006) Glacial refugia of mammals in Europe: evidence from fossil records. Mammal Rev 36:251–265

    Article  Google Scholar 

  • Taberlet P, Fumagalli L, Wust-Saucy A-G, Cosson J-F (1998) Comparative phylogeography and postglacial colonization routes in Europe. Mol Ecol 7:453–464

    Article  PubMed  CAS  Google Scholar 

  • Taberlet P, Griffin S, Goossens B, Questiau S, Manceau V, Escaravage N, Waits LP, Bouvet J (1996) Reliable genotyping of samples with very low DNA quantities using PCR. Nucleic Acids Res 24:3189–3194

    Article  PubMed  CAS  Google Scholar 

  • van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER (Version 2.2.3): Software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Vigne J-D (1988) Les Mammifères post-glaciaires de Corse, étude Archéozoologique (XXVIe suppl. Gallia Préhistoire). CNRS, Paris

    Google Scholar 

  • Vigne J-D (1992) Zooarchaeology and the biogeographical history of the mammals of Corsica and Sardinia since the last ice age. Mammal Rev 22:87–96

    Google Scholar 

  • Vigne J-D (1993) Domestication ou appropriation pour la chasse: histoire d’un choix socio-culturel depuis le Néolithique. L’exemple des cerfs (Cervus). In: Desse J, Audoin-Rouzeau F (eds) Exploitation des animaux sauvages à travers le temps. APDCA éd, Antibes

    Google Scholar 

  • Vigne J-D (1999) The large „true” Mediterranean islands as a model for the Holocene human impact on the European vertebrate fauna? Recent data and new reflections. In: Benecke N (ed) The holocene history of the European vertebrate fauna. Modern aspects of research. Verlag Marie Leihdorf, Rahden

    Google Scholar 

  • Vigne J-D (2003) L’exploitation des animaux à Torre Sabea. Nouvelles analyses sur les débuts de l’élevage en Méditerranée centrale et occidentale. In: Guilaine J, Cremonesi G (eds) Torre Sabea, un établissement du Néolithique ancien en Salento. Ecole Française, Rome (Collection de l’Ecole Française de Rome 315)

    Google Scholar 

  • Vigne J-D, Alcover J-A (1985) Incidence des relations historiques entre l’Homme et l’Animal dans la composition actuelle du peuplement amphibien, reptilien et mammalien des îles de Méditerranée occidentale. Actes 110e Congrès Nat. Sociétés Savantes (Montpellier, 1985). Sect Sci 2:79–91

    Google Scholar 

  • Vigne J-D, Marinval-Vigne M-C (1988) Contribution à la connaissance du Cerf de Corse (Cervus elaphus, Artiodactyla, Mammalia) et de son histoire. Bull Ecol 19:177–187

    Google Scholar 

  • Vigne J-D, Bailon S, Cuisin J (1997) Biostratigraphy of amphibians, reptiles, birds and mammals in Corsica and the role of man in the Holocene turnover. Anthropozoologica 25–26:587–604

    Google Scholar 

  • Wattier R, Engel CR, Saumitou-Laprade P, Valero M (1998) Short allele dominance as a source of heterozygote deficiency at microsatellite loci: experimental evidence at the dinucleotide locus Gv1CT in Gracilaria gracilis (Rhodophyta). Mol Ecol 7:1569–1573

    Article  CAS  Google Scholar 

  • Wemmer C (1998) Deer. Status survey and conservation action plan. IUCN/SSC Deer Specialist Group, Gland, Cambridge

    Google Scholar 

  • Zachos FE, Althoff C, v Steynitz Y, Eckert I, Hartl GB (2007) Genetic analysis of an isolated red deer (Cervus elaphus) population showing signs of inbreeding depression. Eur J Wildlife Res 53:61–67

    Article  Google Scholar 

  • Zachos FE, Hartl GB (2006) Island populations, human introductions and the limitations of genetic analyses: the case of the Sardinian red deer (Cervus elaphus corsicanus). Hum Evol 21:177–183

    Article  Google Scholar 

  • Zachos F, Hartl GB, Apollonio M, Reutershan T (2003) On the phylogeographic origin of the Corsican red deer (Cervus elaphus corsicanus): evidence from microsatellites and mitochondrial DNA. Mamm Biol 68:284–298

    Article  Google Scholar 

  • Zachos FE, Hmwe SS, Hartl GB (2006) Biochemical and DNA markers yield strikingly different results regarding variability and differentiation of roe deer (Capreolus capreolus, Artiodactyla: Cervidae) populations from northern Germany. J Zool Syst Evol Res 44:167–174

    Article  Google Scholar 

Download references

Acknowledgements

F. Klein, R. Unici, J. Sale, H. Rose, S. Aulagnier, A. J. Garcia Diaz and N. Kidjo kindly assisted in obtaining samples. Their help is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank E. Zachos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hajji, G.M., Charfi-Cheikrouha, F., Lorenzini, R. et al. Phylogeography and founder effect of the endangered Corsican red deer (Cervus elaphus corsicanus). Biodivers Conserv 17, 659–673 (2008). https://doi.org/10.1007/s10531-007-9297-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-007-9297-9

Keywords

Navigation