Skip to main content

Advertisement

Log in

Conservation genetics in a globally changing environment: present problems, paradoxes and future challenges

  • Review Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Despite recent advances in conservation genetics and related disciplines and the growing impact that conservation genetics is having in conservation biology, our knowledge on several key issues in the field is still insufficient. Here we identify some of these issues together with addressing several paradoxes which have to be solved before conservation genetics can face new challenges that are appearing in the transitory phase from the population genetics into the population genomics era. Most of these issues, paradoxes and challenges, like the central dogma of conservation genetics, the computational, theoretical and laboratory experiment achievements and limitations in the conservation genetics field have been discussed. Further knowledge on the consequences of inbreeding and outbreeding depression in wild populations as well as the capacity of small populations to adapt to local environmental conditions is also urgently needed. The integration of experimental, theoretical and applied conservation genetics will contribute to improve our understanding of methodological and applied aspects of conservation genetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Andersen DH, Pertoldi C, Scali V, Loeschcke V (2002) Intraspecific hybridisation, developmental stability and fitness in Drosophila mercatorum. Evol Ecol Res 4:603–621

    Google Scholar 

  • Balloux F (1999) EASYPOP, a software for population genetic simulation. University of Lausanne, Lausanne, Switzerland

    Google Scholar 

  • Bangert R, Turek RJ, Martinsen GD, Wimp GM, Bailey JK, Whitham TG (2005) Benefits of conservation of plant genetic diversity to arthropod diversity. Conserv Biol 19:379–390

    Google Scholar 

  • Barbraud C, Weimerskirch H (2003) Climate and density shape population dynamics of a marine top predator. Proc R Soc B 270:2111–2116

    PubMed  Google Scholar 

  • Bass AL, Epperly SP, Braun-McNell J (2004) Multi-year analysis of stock composition of a loggerhead turtle Caretta caretta foraging habitat using maximum likelihood and Bayesian methods. Conserv Genet 5:783–796

    CAS  Google Scholar 

  • Basset P, Balloux F, Perrin N (2001) Testing demographic models on effective population size. Proc R Soc Lond B 268:211–317

    Google Scholar 

  • Beaumont MA, Rannala B (2004) The Bayesian revolution in genetics. Nat Rev Genet 5:251–261

    PubMed  CAS  Google Scholar 

  • Bijlsma R, Bundgaard J, Boerema A (2000) Does inbreeding affect the extinction risk of small populations?: predictions from Drosophila. J Evol Biol 13:502–514

    Google Scholar 

  • Bijlsma R, Bundgaard J, Van Putten VF (1999) Environmental dependence of inbreeding depression and purging in Drosophila Melanogaster. J Evol Biol 12:1125–1137

    Google Scholar 

  • Bouchy P, Theodorou K, Couvet D (2005) Metapopulation viability: influence of migration. Conserv Genet 6:75–78

    Google Scholar 

  • Boyce MS, Haridas CV, Lee CT, the NCEAS Stochastic Demography Working Group (2006) Demography in an increasingly variable world. Trends Ecol Evol 21:141–148

    Google Scholar 

  • Brito D, Da Fonseca GAB (2006) Evaluation of minimum viable population size and conservation status of the long-furred woolly mouse opossum Micoureus paraguayanus: an endemic marsupial of the Atlantic Forest. Biodivers Conserv 15:1713–1728

    Google Scholar 

  • Brito D, Grelle CED (2004) Effectiveness of a reserve network for the conservation of the endemic marsupial Micoureus travassosi in Atlantic Forest remnants in southeastern Brazil. Biodivers Conserv 13:2519–2536

    Google Scholar 

  • Brito D, Grelle CEV (2006) Estimating minimum area of suitable habitat and viable population size for the northern muriqui Brachyteles hypoxanthus. Biodivers Conserv 15:4197–4210

    Google Scholar 

  • Bürger R, Lynch M (1995) Evolution and extinction in a changing environment: a quantitative-genetic analysis. Evolution 49:151–163

    Google Scholar 

  • Byers DL, Waller DM (1999) Do plant populations purge their genetic load? Effects of population size and mating history on inbreeding depression. Annu Rev Ecol Syst 30:479–513

    Google Scholar 

  • Caballero A (1994) Developments in the prediction of effective population size. Heredity 73:657–679

    PubMed  Google Scholar 

  • Caprio MA, Tabashnik BE (1992) Gene flow accelerates local adaptation among finite populations: simulating the evolution of insecticide resistance. J Econ Entomol 85:611–620

    Google Scholar 

  • Chelomina GN (2006) Ancient DNA. Russ J Genet 42:219–233

    CAS  Google Scholar 

  • Comins HN (1977) The development of insecticide resistance in the presence of migration. J Theor Biol 64:177–197

    PubMed  CAS  Google Scholar 

  • Coulson T, Benton TG, Lundberg P, Dall SRX, Kendall BE, Gaillard J-M (2005b) Estimating individual contributions to population growth: evolutionary fitness in ecological time. Proc R Soc B 273:547–555

    Google Scholar 

  • Coulson T, Guiness F, Pemberton J, Clutton-brock T (2005a) The demographic consequences of releasing a population of red deer from culling. Ecology 85:411–422

    Google Scholar 

  • Courtois R, Bernatchez L, Ouellet J-P, Breton L (2003) Significance of caribou Rangifer tarandus ecotypes from a molecular genetics viewpoint. Conserv Genet 4:393–404

    CAS  Google Scholar 

  • Crandall KA, Bininda-Edmonds ORP, Mace GM, Wayne RK (2000) Considering evolutionary processes in conservation biology: an alternative to “evolutionary significant units”. Trends Ecol Evol 15:290–295

    PubMed  Google Scholar 

  • Crandall KA, Dan Vasco DP (1999) Effective population sizes: missing measures and missing concepts. Anim Conserv 4:317–319

    Google Scholar 

  • Crnokrak P, Roff DA (1999) Inbreeding depression in the wild. Heredity 83:260–270

    PubMed  Google Scholar 

  • Day SB, Bryant EH, Meffert LM (2003) The influence of variable rates of inbreeding on fitness, environmental responsiveness, and evolutionary potential. Evolution 57:1314–1324

    PubMed  Google Scholar 

  • De Souza CL Jr, Geraldi IO, Vencovsky R (2000) Response to recurrent selection under small effective population size. Genet Mol Biol 23:841–846

    Google Scholar 

  • Dobzhansky T (1970) Genetics of the evolutionary process. Columbia University Press, New York

    Google Scholar 

  • Douglas SE (2006) Microarray studies of gene expression in fish. Omics J Integr Biol 10:474–489

    CAS  Google Scholar 

  • Edmands S (2007) Between a rock and a hard place: evaluating the relative risks of inbreeding and outbreeding for conservation and management. Mol Ecol 16:463–475

    PubMed  Google Scholar 

  • Edmands S, Timmerman CC (2003) Modeling factors affecting the severity of outbreeding depression. Conserv Biol 17:883–892

    Google Scholar 

  • Ernande B, Dieckmann U (2004) The evolution of phenotypic plasticity in spatially structured environments: implications of intraspecific competition, plasticity costs, and environmental characteristics. J Evol Biol 17:613–628

    PubMed  CAS  Google Scholar 

  • Fabiani A, Hoelzel AR, Galimberti F, Muelbert MMC (2003) Long-range paternal gene flow in the southern elephant seal. Science 299:676

    PubMed  Google Scholar 

  • Frankham R (1995) Conservation genetics. Annu Rev Genet 29:305–327

    PubMed  CAS  Google Scholar 

  • Frankham R (2005) Genetics and extinction (review article). Biol Conserv 126:131–140

    Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge

    Google Scholar 

  • Gaggiotti OE (2003) Genetic threats to population persistence. Ann Zool Fenn 40:155–168

    Google Scholar 

  • Gaggiotti OE, Vetter RD (1999) Effect of life history strategy, environmental variability, and overexploitation on the genetic diversity of pelagic fish populations. Can J Fish Aquat Sci 56:1376–1388

    Google Scholar 

  • Garrigan D, Hammer MF (2006) Reconstructing human origins in the genomic era. Nat Rev Genet 7:669–680

    PubMed  CAS  Google Scholar 

  • Gilligan DM, Briscoe DA, Frankham R (2005) Comparative losses of quantitative and molecular genetic variation in finite populations of Drosophila melanogaster. Genet Res 85:47–55

    PubMed  CAS  Google Scholar 

  • Gilpin ME (1987) Spatial structure and population vulnerability. In: Soulé ME (ed) Viable populations for conservation. Cambridge University Press, Cambridge, pp 125–139

    Google Scholar 

  • Gomulkiewicz R, Holt RD (1995) When does evolution by natural selection prevent extinction? Evolution 49:201–207

    Google Scholar 

  • Gotelli NJ (1991) Metapopulation models—The rescue effect, the propagule rain, and the core-satellites hypothesis. Am Nat 138:768–776

    Google Scholar 

  • Guillaume F, Perrin N (2006) Joint evolution of dispersal and inbreeding load. Genetics 173:497–509

    PubMed  Google Scholar 

  • Hanski I, Gilpin ME (1997) Metapopulation biology, ecology, genetics, and evolution. Academic, San Diego, California

    Google Scholar 

  • Harshman LG, Hoffmann AA (2000) Laboratory selection experiments using Drosophila: what do they really tell us? Trends Ecol Evol 15:32–36

    PubMed  Google Scholar 

  • Hauser L, Adcock GJ, Smith PJ, Ramirez JHB, Carvalho GR (2002) Loss of microsatellite diversity and low effective population size in an overexploited population of New Zealand snapper Pagrus auratus. Proc Natl Acad Sci USA 99:11742–11747

    PubMed  CAS  Google Scholar 

  • Hedrick PW (2000) Inbreeding depression in conservation biology. Annu Rev Ecol Syst 31:139–162

    Google Scholar 

  • Hedrick PW (2001) Conservation genetics: where are we now? Trends Ecol Evol 16:629–636

    Google Scholar 

  • Hedrick PW (2005) Large variance in reproductive success and the Ne/N ratio. Evolution 59:1596–1599

    PubMed  Google Scholar 

  • Higgins K, Lynch M (2001) Metapopulation extinction caused by mutation accumulation. Proc Natl Acad Sci USA 98:2928–2933

    PubMed  CAS  Google Scholar 

  • Hoelzel AR (1999) Impact of population bottlenecks on genetic variation and the importance of life-history; a case study of the northern elephant seal. Biol J Linn Soc 68:23–39

    Google Scholar 

  • Hoffmann AA, Sørensen JG, Loeschcke V (2003) Adaptation to extreme temperatures in Drosophila combining quantitative and molecular approaches. J Therm Biol 28:175–216

    Google Scholar 

  • Holt RD, Gomulkiewicz R (1997) How does immigration influence local adaptation? A reexamination of a familiar paradigm. Am Nat 149:563–572

    Google Scholar 

  • Husband BC, Schemske DW (1996) Evolution of the magnitude and timing of inbreeding depression in plants. Evolution 50:54–70

    Google Scholar 

  • Jimenez JA, Hughes KA, Alaks G, Graham L, Lacy RC (1994) An experimental study of inbreeding depression in natural habitat. Science 266:271–273

    PubMed  CAS  Google Scholar 

  • Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends Ecol Evol 17:230–241

    Google Scholar 

  • Kimberly AS, Toonen RJ (2006) Microsatellites for ecoloigists: a practical guide to using and evaluating microsatellites markers. Ecol Lett 9:615–629

    Google Scholar 

  • Kristensen TN, Loeschcke V, Hoffmann AA (2007) Can artificially selected phenotypes influence a component of field fitness? Thermal selection and fly performance under thermal extremes. Proc R Soc B 274:771–778

    PubMed  Google Scholar 

  • Kristensen TN, Pertoldi C, Andersen HD, Loeschcke V (2003) The use of fluctuating asymmetry and phenotypic variability as indicators of developmental instability, testing of a new method employing clonal organisms and high temperature stress. Evol Ecol Res 5:53–68

    Google Scholar 

  • Kristensen TN, Pertoldi C, Pedersen LD, Andersen DH, Bach LA, Loeschcke V (2004) The increase of fluctuating asymmetry in a monoclonal strain of collembolans after chemical exposure—discussing a new method for estimating the environmental variance. Ecol Indic 4:73–81

    CAS  Google Scholar 

  • Kristensen TN, Sorensen AC, Sorensen D, Pedersen KS, Sørensen JG, Loeschcke V (2005a) A test of quantitative genetic theory using Drosophila—effects of inbreeding and rate of inbreeding on heritabilities and variance components. J Evol Biol 18:763–770

    PubMed  CAS  Google Scholar 

  • Kristensen TN, Sorensen P, Kruhoffer M, Kruhøffer M, Loeschcke V (2005b) Genome-wide analysis on inbreeding effects on gene expression in Drosophila melanogaster. Genetics 171:157–167

    PubMed  CAS  Google Scholar 

  • Kristensen TN, Sorensen P, Pedersen KS, Kruhøffer M, Loeschcke V (2006) Inbreeding by environmental interactions affect gene expression in Drosophila melanogaster. Genetics 173:1329–1336

    PubMed  CAS  Google Scholar 

  • Lacy RC (1997) Importance of genetic variation to the viability of mammalian populations. J Mammal 78:320–335

    Google Scholar 

  • Lande R (1995) Mutation and conservation. Conserv Biol 9:782–791

    Google Scholar 

  • Lande R, Shannon S (1996) The role of genetic variation in adaptation and population persistence in changing environment. Evolution 50:434–437

    Google Scholar 

  • Lenormand Y (2002) Gene flow and the limits to natural selection. Trends Ecol Evol 17:183–189

    Google Scholar 

  • Luikart G, England PR (1999) Statistical analysis of microsatellite DNA data. Trends Ecol Evol 14:253–256

    PubMed  Google Scholar 

  • Lynch M (1996) A quantitative-genetic perspective on conservation issues. In: Avise JC, Hamrick JL (eds) Conservation genetics. Case histories from nature. Chapman & Hall, New York, pp 471–501

    Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Manel S, Berthier P, Luikart G (2002) Detecting wildlife poaching: identifying the origin of individuals with bayesian assignment tests and multilocus genotypes. Conserv Biol 16:650–659

    Google Scholar 

  • Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18:189–197

    Google Scholar 

  • Marr AB, Keller LF, Arcese P (2002) Heterosis and outbreeding depression in descendant of natural immigrants to an inbred population of song sparrow Melospiza melodia. Evolution 56:131–142

    PubMed  Google Scholar 

  • May RM (2001) Stability and complexity in model ecosystems. Princeton University Press, Oxfordshire

    Google Scholar 

  • McCann KS, Botsford L, Hastings AW (2003) Differential response of marine populations to climate forcing. Can J Fish Aquat Sci 60:971–985

    Google Scholar 

  • McCarty JP (2001) Ecological consequences of recent climate change. Conserv Biol 15:320–331

    Google Scholar 

  • McLaughlin JF, Hellmann JJ, Boggs CL, Erlich PR (2002) Climate change hastens population extinctions. Proc Natl Acad Sci USA 99:6070–6074

    PubMed  CAS  Google Scholar 

  • Merila J (1997) Expression of genetic variation in body size of the collared flycatcher under different environmental conditions. Evolution 51:526–536

    Google Scholar 

  • Morin PA, Luikart G, Wayne RK (2004) SNPs in ecology, evolution and conservation. Trends Ecol Evol 19:208–216

    Google Scholar 

  • Niehaus AC, Wilson RS, Franklin CE (2006) Short- and long-term consequences of thermal variation in the larval environment of anurans. J Anim Ecol 75:686–692

    PubMed  Google Scholar 

  • Nielsen EE, Hansen MM, Loeschcke V (1997) Analysis of microsatellite DNA from old scale samples of Atlantic salmon Salmo salar: a comparison of genetic composition over 60 years. Mol Ecol 6:487–492

    CAS  Google Scholar 

  • Nomura T (2005) Methods for minimizing the loss of genetic diversity in conserved populations with overlapping generations. Conserv Genet 6:655–663

    Google Scholar 

  • Nunney L (1999) The effective size of a hierarchically structured population. Evolution 53:1–10

    Google Scholar 

  • O’Regan HJ, Kitchener AC (2005) The effects of captivity on the morphology of captive, domesticated and feral mammals. Mamm Rev 35:215–230

    Google Scholar 

  • Orrock JL (2005) Conservation corridors affect the fixation of novel alleles. Conserv Genet 6:623–630

    Google Scholar 

  • Ouborg NJ, Vergeer P, Mix C (2006) The rough edges of the conservation genetics paradigm for plants. J Ecol 94:1233–1248

    Google Scholar 

  • Paabo S, Poinar H, Serre D, Jaenicke-Despres V, Hebler J, Rohland N, Kuch M, Krause J, Vigilant L, Hofreiter M (2004) Genetic analyses from ancient DNA. Annu Rev Genet 38:645–679

    PubMed  Google Scholar 

  • Pakkasmaa S, Merilä J, O’Hara RB (2003) Genetic and maternal effect influences on viability of common frog tadpoles under different environmental conditions. Heredity 91:117–124

    PubMed  CAS  Google Scholar 

  • Palo JU, Schmeller DS, Laurila A, Primmer CR, Kuzmin SL, Merila J (2004) High degree of population subdivision in a widespread Amphibian. Mol Ecol 13:2631–2644

    PubMed  CAS  Google Scholar 

  • Pearse DE, Crandall KA (2004) Beyond FST: analysis of population genetic data for conservation. Conserv Genet 5:585–602

    CAS  Google Scholar 

  • Pertoldi C, Bach LA, Barker JSF, Lundberg P, Loeschcke V (2007a) The consequences of the variance-mean rescaling effect on effective population size. Oikos 116:769–774

    Google Scholar 

  • Pertoldi C, Bijlsma R, Loeschcke V (2007b) Integrating population genetics and conservation biology: merging theoretical, experimental and applied approaches (Potsdam, Germany). Conserv Genet (OnlineEarly Articles). doi:10.1007/s10592-006-9261-3

  • Pertoldi C, Hansen MM, Loeschcke V, Madsen AB, Jacobsen L, Baagoe H (2001) Genetic consequences of population decline in European Otter Lutra lutra: an assessment of microsatellite DNA variation in Danish otters from 1883 to 1993. Proc R Soc Lond B 268:1775–1781

    CAS  Google Scholar 

  • Pertoldi C, Loeschchke V, Randi E, Madsen AB, Hansen MM, Bijlsma R, Van De Zande L (2005) Present and past microsatellite variation and assessment of genetic structure in Eurasian badger Meles meles in Denmark. J Zool 265:387–394

    Google Scholar 

  • Pertoldi C, Norup AM, Madsen AB, Baagoe H, Randi E, Loeschcke V (2006a) No evidence of past bottlenecks in two Danish mustelids: results of the craniometric and genetic studies in time and space. Biol J Linn Soc 88:541–553

    Google Scholar 

  • Pertoldi C, Sørensen JG, David JR, Loeschcke V (2006b) Lerner’s theory on the genetic relationship between heterozygosity, genomic co-adaptation, and developmental instability, revisited. Evol Ecol Res 8:1487–1498

    Google Scholar 

  • Pigliucci M (2005) Evolution of phenotypic plasticity: where are we going now? Trends Ecol Evol 20:481–486

    PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Quattro JM, Vrijenhoek RC (1989) Fitness differences among remnant populations of the endangered Sonoran topminnow. Science 245:976–978

    PubMed  CAS  Google Scholar 

  • Randi E, Lucchini V (2002) Detecting rare introgression of domestic dog genes into wild wolf Canis lupus population by Bayesian admixture analyses of microsatellite variation. Conserv Genet 3:31–45

    CAS  Google Scholar 

  • Reed DH, Frankham R (2001) How closely correlated are molecular and quantitative measures of genetic variation? A meta-analysis. Evolution 55:1095–1103

    PubMed  CAS  Google Scholar 

  • Reed DH, Lowe EH, Briscoe DA, Frankham R (2003) Inbreeding and extinction: effects of rate of inbreeding. Conserv Genet 4:405–410

    CAS  Google Scholar 

  • Reusch TBH, Ehlers A, Hämmerli A, Worm B (2005) Ecosystem recovery after climatic extremes enhanced by genotypic diversity. Proc Natl Acad Sci USA 102:2826–2831

    PubMed  CAS  Google Scholar 

  • Røgilds A, Andersen DH, Pertoldi C, Dimitrov K, Loeschcke V (2005) Maternal and grandmaternal age effects on developmental instability and wing size in parthenogenetic Drosophila mercatorum. Biogerontology 6:1–9

    Google Scholar 

  • Saether BE, Lande R, Engen S, Weimerskirch H, Lillegard M, Altwegg RH, Becker P, Bregnballe T, Brommer JE, McCleery RH, Merila J, Nyholm E, Rendell W, Robertson R (2005) Time to extinction in bird populations. Ecology 86:693–700

    Google Scholar 

  • Sagvik J, Uller T, Olsson M (2005) Outbreeding depression in the common frog Rana temporaria. Conserv Genet 6:205–211

    Google Scholar 

  • Schlichting CD, Pigliucci M (1998) Phenotypic plasticity: a reaction norm perspective. Sinauer, Sunderland

    Google Scholar 

  • Schwartz MK, Luikart G, Waples RS (2007) Genetic monitoring as a promising tool for conservation and managent. Trends Ecol Evol 22:25–33

    PubMed  Google Scholar 

  • Sheldon BC, West SA (2004) Maternal dominance, maternal condition, and offspring sex ratio in ungulate mammals. Am Nat 163:40–54

    PubMed  Google Scholar 

  • Slatkin M (1987) Gene flow and the geographic structure of natural-populations. Science 236:787–792

    PubMed  CAS  Google Scholar 

  • Sørensen JS, Nielsen MM, Loeschcke V (2007) Gene expression profile analysis of Drosophila melanogaster selected for resistance to environmental stressors. J Evol Biol 20:1624–1636

    PubMed  Google Scholar 

  • Spielman D, Brook BW, Briscoe DA, Frankham R (2004a) Does inbreeding and loss of genetic diversity decrease genetic resistance? Conserv Genet 5:439–448

    Google Scholar 

  • Spielman D, Brook BW, Frankham R (2004b) Most species are not driven to extinction before genetic factors impact them. Proc Natl Acad Sci USA 101:15261–15264

    PubMed  CAS  Google Scholar 

  • Stenseth N, Viljugrein H, Saitoh T, Hansen TF, Kittilsen MO, Bølviken E, Glöckner F (2003) Seasonality, density-dependence and population cycles in Hokkaido voles. Proc Natl Acad Sci USA 100:11478–11483

    PubMed  CAS  Google Scholar 

  • Stern DL (2000) Evolutionary developmental biology and the problem of variation. Evolution 54:1079–1091

    PubMed  CAS  Google Scholar 

  • Strand AE (2002) metasim 1.0: an individual-based environment for simulating population genetics of complex population dynamics. Mol Ecol Notes 2:373–376

    Google Scholar 

  • Swindell WR, Bouzat JL (2006) Gene flow and adaptive potential in Drosophila melanogaster. Conserv Genet 7:79–89

    Google Scholar 

  • Taylor CE, Georghiou GP (1979) Suppression of insecticide resistance by alteration of gene dominance and migration. J Econ Entomol 72:105–109

    Google Scholar 

  • Taylor LR (1961) Aggregation, variance and the mean. Nature 189:732–735

    Google Scholar 

  • Templeton AR (1986) Coadaptation and outbreeding depression. In: Soule´ ME (ed) Conservation biology: the science of scarcity and diversity. Sinauer Associates, Sunderland, MA, pp 105–116

    Google Scholar 

  • Templeton AR (1991) Off-site breeding of animals and implications for plant conservation strategies. In: Falk DA, Holsinger KE (eds) Genetics and conservation of rare plants. Oxford University Press, New York, pp 182–194

    Google Scholar 

  • Tilman D (1996) Biodiversity: population versus ecosystem stability. Ecology 77:350–363

    Google Scholar 

  • Toro M, Barragán C, Óvilo C, Rodrigañez J, Rodriguez C, Silió L (2002) Estimation of coancestry in Iberian pigs using molecular markers. Conserv Genet 3:309–320

    CAS  Google Scholar 

  • Townsend JP, Cavalieri D, Hartl DL (2003) Population genetic variation in genome-wide gene expression. Mol Biol Evol 20:955–963

    PubMed  CAS  Google Scholar 

  • Turner TF (2001) Temporal-method estimates of Ne from highly polymorphic loci. Conserv Genet 2:297–308

    Google Scholar 

  • Turner TF, Wares JP, Gold JR (2002) Genetic effective size is three orders of magnitude smaller than adult census size in an abundant, estuarine-dependent marine fish Sciaenops ocellatus. Genetics 162:1329–1339

    PubMed  Google Scholar 

  • Valladares F, Sanchez-Gomez D, Zavala MA (2006) Quantitative estimation of phenotypic plasticity: bridging the gap between the evolutionary concept and its ecological applications. J Ecol 94:1103–1116

    Google Scholar 

  • Vergeer P, Sonderen E, Ouborg NJ (2004) Introduction strategies put to the test: local adaptation versus heterosis. Conserv Biol 18:812–821

    Google Scholar 

  • Vignal A, Milan D, SanCristobal M, Eggen A (2002) A review on SNP and other types of molecular markers and their use in animal genetics source. Genet Sel Evol 34:275–305

    PubMed  CAS  Google Scholar 

  • Walther G-R, Post E, Convey P, Menzel A, Parmesan C, Trevor J, Beebee C, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395

    PubMed  CAS  Google Scholar 

  • Wang D, Marsh JL, Ayala FJ (1996) Evolutionary changes in the expression pattern of a developmentally essential gene in three Drosophila species. Proc Natl Acad Sci USA 93:7103–7107

    PubMed  CAS  Google Scholar 

  • Wang J (2000) Effects of population structures and selection strategies on the purging of inbreeding depression due to deleterious mutations. Genet Res 76:75–86

    PubMed  CAS  Google Scholar 

  • Waples RS (1991) Pacific salmon Oncorbynchus spp., and the definition of “species” under the Endangered species act. Mar Fish Rev 53:11–22

    Google Scholar 

  • Waples RS (2002) Evaluating the effect of stage-specific survivorship on the Ne/N ratio. Mol Ecol 11:1029–1037

    PubMed  Google Scholar 

  • Whitlock MC, Barton NH (1997) The effective size of a subdivided population. Genetics 146:427–441

    PubMed  CAS  Google Scholar 

  • Williamson-Natesan EG (2005) Comparisons of methods for detecting bottlenecks from microsatellite loci. Conserv Genet 6:551–562

    Google Scholar 

  • Wisely SM, Maldonado JM, Fleische MC (2004) A technique for sampling ancient DNA that minimizes damage to museum specimens. Conserv Genet 5:105–107

    CAS  Google Scholar 

Download references

Acknowledgements

We wish to acknowledge the ConGen Program (funded by the European Science Foundation) and the Danish National Research Council for financial support (CP grants no. 21-01-0526 and no. 21-03-0125, VL frame grant). This review has profited greatly from the discussions that took place during several workshops organized through this Programme (Potsdam, 22–25 May 2005; Santiago de Compostella, 17–29 November 2005; Montpellier, 7–9 December 2006; Antalya 21–23 January 2007; Helsinki, 9–13 February 2007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cino Pertoldi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pertoldi, C., Bijlsma, R. & Loeschcke, V. Conservation genetics in a globally changing environment: present problems, paradoxes and future challenges. Biodivers Conserv 16, 4147–4163 (2007). https://doi.org/10.1007/s10531-007-9212-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-007-9212-4

Keywords

Navigation