Skip to main content
Log in

Genetic differentiation between introduced Central European sika and source populations in Japan: effects of isolation and demographic events

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Japanese sika deer (Cervus nippon nippon) were introduced at the turn of nineteenth and twentieth century to many countries in Eurasia, North America and Australasia. Subsequently, free-living invasive populations have become established in several countries, including the Czech Republic, where the expanding sika population causes serious problems through overgrazing, damage through browsing and through competition and hybridisation with native red deer. 122 Japanese and 221 Czech samples were used to examine the genetic diversity, genetic structure, and the level of genetic differentiation between native populations and those introduced to the Czech Republic. Analyses of 22 microsatellite loci revealed, for both countries, evidence of isolation by distance and clear sub-structuring of populations, different from patterns previously revealed by mtDNA markers. The high number of private alleles (58 within the Czech Republic and 84 within Japan), the Fst values, factorial correspondence analysis and Bayesian clustering support a high level of divergence between the source and introduced populations. Genetic variability was generally low due to recent demographic events (founder effect in the Czech population, bottlenecks in Japanese populations); however, the values of expected heterozygosity differed greatly between subpopulations and were not the lowest in the introduced Czech populations. Multiple introductions, rapid population growth, and possible hybridisation with red deer seem to have helped the successful expansion of sika within the Czech Republic. The results also indicate that male-mediated gene flow and human-mediated translocations have significantly influenced the current genetic structure of native sika populations in Japan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allendorf FW (1986) Genetic drift and the loss of alleles versus heterozygosity. Zoo Biol 5:181–190. doi:10.1002/zoo.1430050212

    Article  Google Scholar 

  • Allendorf FW, Leary RF (1986) Heterozygosity and fitness in animals. In: Soule ME (ed) Conservation Biology. Sinauer, Sunderland, pp 57–76

    Google Scholar 

  • Allendorf FW, Lundquist LL (2003) Introduction: population biology, evolution, and control of invasive species. Conserv Biol 17:24–30

    Article  Google Scholar 

  • Amos W, Balmford A (2001) When does conservation genetics matter? Heredity 87:257–265

    Article  CAS  PubMed  Google Scholar 

  • Amos W, Harwood J (1998) Factors affecting levels of genetic diversity in natural populations. Philos Trans R Soc B 353:177–186

    Article  CAS  Google Scholar 

  • Apollonio M, Scandura M, Sprem N (2014) Reintroductions as a management tool for European Ungulates. In: Putman R, Apollonio M (eds) Behaviour and management of European Ungulates. Whittles Publishing, Dunbeath, pp 46–77

    Google Scholar 

  • Barančeková M, Krojerová-Prokešová J, Voloshina IV, Myslenkov AI, Kawata Y, Oshida T, Lamka J, Koubek P (2012) The origin and genetic variability of the Czech sika deer population. Ecol Res 27:991–1003

    Article  Google Scholar 

  • Barrett SCH (1996) The reproductive biology and genetics of island plants. Philos T R Soc Lond B 351:725–733

    Article  Google Scholar 

  • Barrett SCH, Richardson BJ (1986) Genetic attributes of invading species. In: Groves RH, Burdon JJ (eds) Ecology of biological invasions. Cambridge University Press, New York, pp 21–33

    Google Scholar 

  • Bartoš L (2009) Sika deer in continental Europe. In: McCullough DR, Takatsuki S, Kaji K (eds) Sika deer: biology and management of native and introduced populations. Springer, Tokyo, pp 573–594

    Chapter  Google Scholar 

  • Bartoš L, Žirovnický J (1981) Hybridisation between red and sika deer. II. Phenotype analysis. Zool Anz 207:271–287

    Google Scholar 

  • Bartoš L, Hyanek J, Žirovnický J (1981) Hybridisation between red and sika deer. I. Craniological analysis. Zool Anz 207:260–270

    Google Scholar 

  • Baskin Y (2002) A plague of rats and rubbervines. Island Press, Shearwater Books, Washington

    Google Scholar 

  • Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (1996–2004) GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Laboratoire Genome, Populations, Interactions, CNRS UMR 5000, Universite de Montpellier II, Montpellier, France

  • Bonhomme M, Blancher A, Cuartero S, Chikhi L, Crouau-Roy B (2008) Origin and number of founders in an introduced insular primate: estimation from nuclear genetic data. Mol Ecol 17:1009–1019

    Article  CAS  PubMed  Google Scholar 

  • Bouzat JL (2010) Conservation genetics of population bottlenecks: the role of chance, selection, and history. Conserv Genet 11:463–478

    Article  Google Scholar 

  • Clout MN, Russell JC (2008) The invasion ecology of mammals: a global perspective. Wildl Res 35:180–184

    Article  Google Scholar 

  • Cook CE, Wang Y, Sensabaugh G (1999) A mitochondrial control region and cytochrome b phylogeny of sika deer (Cervus nippon) and report of tandem repeats in the control region. Mol Phylogenet Evol 12:47–56

    Article  CAS  PubMed  Google Scholar 

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cox GW (2004) Alien species and evolution. Island Press, Washington

    Google Scholar 

  • Di Rienzo A, Peterson AC, Garza JC, Valdes AM, Slatkin M, Freimer NB (1994) Mutational processes of simple-sequence repeat loci in human populations. PNAS 91:3166–3170

    Article  PubMed  PubMed Central  Google Scholar 

  • Dlugosch KM, Parker IM (2008) Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol 17:431–449

    Article  CAS  PubMed  Google Scholar 

  • Dvořák S (2011) Telemetric monitoring of Japanese sika in hunting district Hradiště. J VLS 6:4–9 (In Czech)

    Google Scholar 

  • Earl DA, von Holdt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361. doi:10.1007/s12686-011-9548-7

    Article  Google Scholar 

  • Ellestrand NC, Elam DR (1993) Population genetic consequences of small population size: implication for plant conservation. Annu Rev Ecol Syst 24:217–242

    Article  Google Scholar 

  • Ellstrand NC, Schierenbeck KA (2000) Hybridization as a stimulus for the evolution of invasiveness in plants. PNAS 97:7043–7050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Fautley R, Coulson T, Savolainen V (2012) A comparative analysis of the factors promoting deer invasion. Biol Invasions 14:2271–2281. doi:10.1007/s10530-012-0228-7

    Article  Google Scholar 

  • Feulner PG, Bielfeldt W, Zachos FE, Bradvarovic J, Eckert I, Hartl GB (2004) Mitochondrial DNA and microsatellite analyses of the genetic status of the presumed subspecies Cervus elaphus montanus (Carpathian red deer). Heredity 93:299–306

    Article  CAS  PubMed  Google Scholar 

  • Frankham R (2005) Invasion biology—resolving the genetic paradox in invasive species. Heredity 94:385

    Article  CAS  PubMed  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2010) Introduction to conservation genetics, 2nd edn. Press Syndicate for the Univ. of Cambridge, Cambridge

    Book  Google Scholar 

  • Frantz AC, Pourtois JT, Heuertz M, Schley L, Flamand MC, Krier A, Bertouille S, Chaumont F, Burke T (2006) Genetic structure and assignment tests demonstrate illegal translocation of red deer (Cervus elaphus) into a continuous population. Mol Ecol 15:3191–3203

    Article  CAS  PubMed  Google Scholar 

  • Garza JC, Williamson EG (2001) Detection of reduction in population size using data from microsatellite loci. Mol Ecol 10:305–318

    Article  CAS  PubMed  Google Scholar 

  • Goodman SJ, Tamate HB, Wilson R et al (2001) Bottlenecks, drift and differentiation: the population structure and demographic history of sika deer (Cervus nippon) in the Japanese archipelago. Mol Ecol 10:1357–1370

    Article  CAS  PubMed  Google Scholar 

  • Goossens B, Chikhi L, Ancrenaz M, Lackman-Ancrenaz I, Andau P, Bruford MW (2006) Genetic signature of anthropogenic population collapse in orangutans. PLoS Biol 4(2):e25. doi:10.1371/journal.pbio.0040025

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Updated from Goudet 1995

  • Goudet J, Raymond M, de Meeus T, Rousset F (1996) Testing differentiation in diploid populations. Genetics 144:1933–1940

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haanes H, Røed KH, Perez-Espona S, Rosef O (2011) Low genetic variation support bottlenecks in Scandinavian red deer. Eur J Wildlife Res 576:1137–1150

    Article  Google Scholar 

  • Hajji GM, Zachos FE, Charfi-Cheikrouha F, Hartl GB (2007) Conservation genetics of the imperilled Barbary red deer in Tunisia. Anim Conserv 10:229–235

    Article  Google Scholar 

  • Hartl DL, Clark AG (1997) Principles of population genetics, 3rd edn. Sinauer Associates Inc, Sunderland

    Google Scholar 

  • Hedrick PW (2000) Genetics of populations. Jones and Bartlett Publishers, Sudbury

    Google Scholar 

  • Hewitt G (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913

    Article  CAS  PubMed  Google Scholar 

  • Hewitt G (2004) Genetic consequences of climatic oscillations in the Quaternary. Philos Trans R Soc Lond B Biol Sci 359(1442):183–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hmwe SS, Zachos FE, Eckert I, Lorenzini R, Fico R, Hartl GB (2006) Conservation genetics of the endangered red deer from Sardinia and Mesola with further remarks on the phylogeography of Cervus elaphus corsicanus. Biol J Linn Soc 88:691–701

    Article  Google Scholar 

  • Igota H, Sakuragi M, Uno H (2009) Seasonal Migration of Sika Deer on Hokkaido Island, Japan. In: McCullough DR, Takatsuki S, Kaji K (eds) Sika deer: biology and management of native and introduced populations. Springer, Tokyo, pp 251–272

    Chapter  Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806. doi:10.1093/bioinformatics/btm233

    Article  CAS  PubMed  Google Scholar 

  • Kaeuffer R, Coltman DW, Chapuis J-L, Pontier D, Reale D (2007) Unexpected heterozygosity in an island mouflon population founded by a single pair of individuals. Proc R Soc B 274:527–533

    Article  CAS  PubMed  Google Scholar 

  • Kaji K (1995) Deer eruptions—a case study in Hokkaido, Japan. Honyurui Kagaku (Mammalian Science) 35:35–43 (In Japanese with English summary)

    Google Scholar 

  • Kaji K, Matsuda H, Uno H, Hirakawa H, Tamada K, Saito T (1998) Sika deer management in Hokkaido. Honyurui Kagaku (Mammalian Science) 38:301–313 (In Japanese with English summary)

    Google Scholar 

  • Kawamura Y (2009) Fossil record of sika deer in Japan. In: McCullough DR, Takatsuki S, Kaji K (eds) Sika deer: biology and management of native and introduced populations. Springer, Tokyo, pp 11–25

    Chapter  Google Scholar 

  • Kekkonen J, Wikström M, Brommer JE (2012) Heterozygosity in an isolated population of a large mammal founded by four individuals is predicted by an individual-based genetic model. PLoS ONE 7(9):e43482. doi:10.1371/journal.pone.0043482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komárek J (1945) The game management in the Czech Republic. ČIN Prague, Prague

    Google Scholar 

  • Krojerova-Prokešová J, Barančeková M, Voloshina I, Myslenkov A, Lamka J, Koubek P (2013) Dybowski’s sika deer (Cervus nippon hortulorum): genetic divergence between natural primorian and introduced Czech populations. J Hered 104:312–326

    Article  PubMed  CAS  Google Scholar 

  • Krojerová-Prokešová J, Barančeková M, Voloshina IV, Kawata Y, Oshida T, Igota H, Lamka J, Koubek P (2010).Sika and red deer populations in the Czech Republic: Is there any evidence of their crossbreeding in captive and/or in free-living populations? In: Werner-Flueck JS and Charrier A (eds) Advances and challenges in deer biology. Proceedings of the 7th International Deer Biology Congress, 1.8–6.8.2010, Huilo Huilo Reserve, Chile, pp 55–56

  • Krojerová-Prokešová J, Barančeková M, Koubek P (2015) Admixture of Eastern and Western European red deer lineages as a result of postglacial recolonization of the Czech Republic (Central Europe). J Hered 106:375–385

    Article  PubMed  Google Scholar 

  • Kuehn R, Schroeder W, Pirchner F, Rottman O (2003) Genetic diversity, gene flow and drift in Bavarian red deer populations (Cervus elaphus). Conserv Genetics 4:157–166

    Article  CAS  Google Scholar 

  • Lande R, Shannon S (1996) The role of genetic variation in adaptation and population persistence in a changing environment. Evolution 50:434–437. doi:10.2307/2410812

    Article  PubMed  Google Scholar 

  • Lee CE (2002) Evolutionary genetics of invasive species. Trends Ecol Evol 17:386–391

    Article  Google Scholar 

  • Luikart G, Allendorf FW, Cornuet JM, Sherwin WB (1998) Distortion of allele frequency distributions provides a test for recent population bottlenecks. J Hered 89:238–247

    Article  CAS  PubMed  Google Scholar 

  • Madsen T, Shine R, Olsson M, Wittzell H (1999) Restoration of an inbred adder population. Nature 402:34–35

    Article  CAS  Google Scholar 

  • Manel S, Gaggiotti O, Waples RS (2005) Assignment methods: matching biological questions with appropriate techniques. Trends Ecol Evol 20:136–142

    Article  PubMed  Google Scholar 

  • Mank JE, Avise JC (2003) Microsatellite variation and differentiation in North Atlantic eels. J Hered 94:310–314

    Article  CAS  PubMed  Google Scholar 

  • Maruyama T, Fuerst PA (1985) Population bottlenecks and nonequilibrium models in population genetics. II. Number of alleles in a small population that was formed by a recent bottleneck. Genetics 111:675–689

    CAS  PubMed  PubMed Central  Google Scholar 

  • McCullough DR, Takatsuki S, Kaji K (2009) Sika deer: biology and management of native and introduced populations. Springer, Tokyo

    Book  Google Scholar 

  • McDevitt AD, Edwards CJ, O’Toole P, O’Sullivan P, O’Reilly C, Carden RF (2009) Genetic structure of, and hybridisation between, red (Cervus elaphus) and sika (Cervus nippon) deer in Ireland. Mamm Biol 74:263–273

    Article  Google Scholar 

  • McNeely JA, Mooney HA, Neville LE, Schei P, Waage JK (2001) A global strategy on invasive alien species. CAB International, Wallingford

    Google Scholar 

  • Merilä J, Björklund M, Baker AJ (1996) The successful founder: genetics of introduced Carduelis chloris (greenfinch) populations in New Zealand. Heredity 77:410–422

    Article  Google Scholar 

  • Nagata J (2009) Two genetically distinct lineages of the Japanese sika deer based on mitochondrial control regions. In: McCullough DR, Takatsuki S, Kaji K (eds) Sika deer: biology and management of native and introduced populations. Springer, Tokyo, pp 27–41

    Chapter  Google Scholar 

  • Nagata J, Masuda R, Yoshida MC (1995) Nucleotide sequences of the cytochrome b and 12S rRNA in the Japanese sika deer Cervus nippon. J Mammal Soc Japan 20:1–8

    Google Scholar 

  • Nagata J, Masuda R, Kaji K, Ochiai K, Asada M, Yoshida MC (1998) Microsatellite DNA variations of sika deer, Cervus nippon, in Hokkaido and Chiba. Mammal Study 23:95–101

    Article  Google Scholar 

  • Nagata J, Masuda R, Tamate HB, Si Hamasaki, Ochiai K, Asada M, Tatsuzawa S, Suda K, Tado H, Yoshida MC (1999) Two genetically distinct lineages of the sika deer, Cervus nippon, in Japanese islands: comparison of mitochondrial D-loop region sequences. Mol Phylogenet Evol 13:511–519. doi:10.1006/mpev.1999.0668

    Article  CAS  PubMed  Google Scholar 

  • Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variability in populations. Evolution 29:1–10

    Article  PubMed  Google Scholar 

  • Nielsen EK, Olesen CR, Pertoldi C, Gravlund P, Barker JSF, Mucci N, Randi E, Loeschcke V (2008) Genetic structure of the Danish red deer (Cervus elaphus). Biol J Linn Soc 95:688–701

    Article  Google Scholar 

  • Nyman T, Valtonen M, Aspi J, Ruokonen M, Kunnasranta M, Palo JU (2014) Demographic histories and genetic diversities of Fennoscandian marine and landlocked ringed seal subspecies. Ecol Evol 4:3420–3434

    Article  PubMed  PubMed Central  Google Scholar 

  • Nyström V, Angerbjörn A, Dalén L (2006) Genetic consequences of a demographic bottleneck in the Scandinavian arctic fox. Oikos 114:84–94

    Article  Google Scholar 

  • Ohtaishi N (1986) Preliminary memorandum of classification, distribution and geographic variation on sika deer. Honyurui Kagaku (Mammalian Science) 53:13–17 (In Japanese with English summary)

    Google Scholar 

  • Ou W, Takekawa S, Yamada T, Terada C, Uno H, Nagata J, Masuda R, Kaji K, Saitoh T (2014) Temporal change in the spatial genetic structure of a sika deer population with an expanding distribution range over a 15-year period. Popul Ecol 56:311–325

    Article  Google Scholar 

  • Pearse DE, Crandall KA (2004) Beyond FST: analysis of population genetic data for conservation. Conserv Genetics 5:585–602

    Article  CAS  Google Scholar 

  • Piry S, Luikart G, Cornuet JM (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90:502–503

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Article  Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  PubMed  Google Scholar 

  • Roman J, Darling JA (2007) Paradox lost: genetic diversity and the success of aquatic invasions. Trends Ecol Evol 22:454–464. doi:10.1016/j.tree.2007.07.002

    Article  PubMed  Google Scholar 

  • Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138. doi:10.1046/j.1471-8286.2003.00566.x

    Article  Google Scholar 

  • Rosenberg MS, Anderson CD (2011) PASSaGE: pattern analysis, spatial statistics and geographic exegesis. Version 2. Methods Ecol Evol 2(3):229–232

    Article  Google Scholar 

  • Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saccheri I, Kuussaari M, Kankare M et al (1998) Inbreeding and extinction in a butterfly metapopulation. Nature 392:491–494

    Article  CAS  Google Scholar 

  • Sanchéz-Fernandéz B, Soriguer R, Rico C (2008) Cross-species tests of 45 microsatellite loci isolated from different species of ungulates in the Iberian red deer (Cervus elaphus hispanicus) to generate a multiplex panel. Mol Ecol Resour 8:1378–1381

    Article  PubMed  CAS  Google Scholar 

  • Senn HV (2009) Hybridisation between red deer (Cervus elaphus) and Japanese sika (C. nippon) on the Kintyre Peninsula, Scotland. Dissertation, University of Edinburgh

  • Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science 236(4803):787–792

    Article  CAS  PubMed  Google Scholar 

  • Slatkin M (1993) Isolation by distance in equilibrium and non-equilibrium populations. Evolution 47:264–279

    Article  PubMed  Google Scholar 

  • Takiguchi H, Tanaka K, Ono K, Hoshi A, Minami M, Yamauchi K, Takatsuki S (2012) Genetic variation and population structure of the Japanese Sika Deer (Cervus nippon) in the Tohoku District based on mitochondrial D-loop sequences. Zool Sci 29:433–436

    Article  PubMed  Google Scholar 

  • Tamate HB, Tsuchiya T (1995) Mitochondrial DNA polymorphism in subspecies of the Japanese Sika deer, Cervus nippon. J Hered 86:211–215

    Article  CAS  PubMed  Google Scholar 

  • Tamate HB, Tatsuzawa S, Suda K, Izawa M, Doi T, Sunagawa K, Miyahira F, Tado H (1998) Mitochondrial DNA variations in local populations of the Japanese sika deer, Cervus nippon. J Mammal 78:1396–1403

    Article  Google Scholar 

  • Tamate HB, Okada A, Minami M, Ohnishi N, Higuchi H, Takatsuki S (2000) Genetic variations revealed by microsatellite markers in a small population of the sika deer (Cervus nippon) on Kinkazan Island, Northern Japan. Zool Sci 17:47–53

    Article  CAS  PubMed  Google Scholar 

  • Vaha JP, Primmer CR (2006) Efficiency of model-based Bayesian methods for detecting hybrid individuals under different hybridization scenarios and with different numbers of loci. Mol Ecol 15:63–72

    Article  CAS  PubMed  Google Scholar 

  • van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICROCHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Resour 4:535–538

    Article  CAS  Google Scholar 

  • Vavruněk J, Wolf R (1977) Breeding of red deer in West-Bohemian region, vol 20. Textbook of the Scientific Forest Institute of VŠZ, Prague, pp 97–115 (In Czech)

    Google Scholar 

  • Vilá C, Sundqvist A-K, Flagstad Ø, Seddon J, Björnerfeldt S, Kojola I, Casulli A, Sand H, Wabakken P, Ellegren H (2003) Rescue of a severely bottlenecked wolf (Canis lupus) population by a single immigrant. Proc Biol Sci 270:91–97

    Article  PubMed  PubMed Central  Google Scholar 

  • Weber DS, Stewart BS, Garza JC, Lehman N (2000) An empirical genetic assessment of the severity of the northern elephant seal population bottleneck. Curr Biol 10:1287–1290

    Article  CAS  PubMed  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    CAS  PubMed  Google Scholar 

  • Whitaker JO, Hamilton WJ (1998) Mammals of the Eastern United States. Cornell University Press, Ithaca

    Google Scholar 

  • Whitehead GK (1993) Encyclopedia of deer. Swan Hill Press, Shrewsbury

    Google Scholar 

  • Williamson-Natesan EG (2005) Comparison of methods for detecting bottlenecks from microsatellite loci. Conserv Genetics 6:551–562. doi:10.1007/s10592-005-9009-5

    Article  Google Scholar 

  • Wilson RL (2000) An investigation into the phylogeography of sika deer (Cervus nippon) using microsatellite markers. Master’s thesis, University of Edinburg

  • Wittenberg R, Cock MJW (2001) Invasive alien species: a toolkit of best prevention and management practices. CAB International, Wallingford

    Book  Google Scholar 

  • Wolf R, Vavruněk J (1975–1976) Eastern sika Cervus nippon Temm in Western Bohemia. Textbook of the Scientific Forest Institute of VŠZ in Prague 18–19:185–199. (In Czech)

  • Worley K, Strobeck C, Arthur S, Carey J, Schwantje H, Veitch A, Coltman DW (2004) Population genetic structure of North American thinhorn sheep (Ovis dalli). Mol Ecol 13:2545–2556

    Article  CAS  PubMed  Google Scholar 

  • Yabe T, Takatsuki S (2009) Migratory and sedentary behavior patterns of sika deer in Honshu and Kyushu, Japan. In: McCullough DR, Takatsuki S, Kaji K (eds) Sika deer: biology and management of native and introduced populations. Springer, Tokyo, pp 273–283

    Chapter  Google Scholar 

  • Yamada M, Hosoi E, Tamate HB, Nagata L, Tatsuzawa S, Tado H, Ozawa S (2006) Distribution of two distinct lineages of sika deer (Cervus nippon) on Shikoku Island revealed by mitochondrial DNA analysis. Mammal Study 31:23–28

    Article  Google Scholar 

  • Yoshio M, Asada M, Ochiai K, Goka K, Murase K, Miyashita T, Tatsuta H (2008) Spatially heterogeneous distribution of mtDNA haplotypes in a sika deer (Cervus nippon) population on the Boso Peninsula, central Japan. Mammal Study 33:59–69

    Article  Google Scholar 

  • Yoshio M, Asada M, Ochiai K, Goka K, Miyashita T, Tatsuta H (2009) Evidence for cryptic genetic discontinuity in a recently expanded sika deer population on the Boso Peninsula, Central Japan. Zool Sci 26:48–53. doi:10.2108/zsj.26.48

    Article  PubMed  Google Scholar 

  • Yuasa T, Nagata J, Hamasaki S, Tsuruga H, Furubayashi K (2007) The impact of habitat fragmentation on genetic structure of Japanese sika deer (Cervus nippon) in southern Kantoh, revealed by mitochondrial D-loop sequences. Ecol Res 22:97–106

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by Grant No. 524/09/1569 of Grant Agency of the Czech Republic and with institutional support RVO: 68081766. We thank to Jaroslav Červený, Zdeněk Macháček, Michal Švec, and Václav Dvořák (Doupov), Petr Ziegrosser (Lány), Jan Figura and Dagmar Čížková (Bouzovsko), Petr Faschingbauer (Český les), Jaroslav Hepner (Manětínsko), Masahiko Asada (the Chiba Biodiversity Centre) for collection of samples, Natália Martínková for the calculation of Mc values, and Rory Putman for the revision of English and all inspiring comments and suggestions on earlier drafts of the manuscript. Further, we thank the editor and two anonymous reviewers for their valuable suggestions that greatly contributed to the improvement of final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jarmila Krojerová-Prokešová.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1435 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krojerová-Prokešová, J., Barančeková, M., Kawata, Y. et al. Genetic differentiation between introduced Central European sika and source populations in Japan: effects of isolation and demographic events. Biol Invasions 19, 2125–2141 (2017). https://doi.org/10.1007/s10530-017-1424-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-017-1424-2

Keywords

Navigation