Skip to main content

Advertisement

Log in

High adaptive variability and virus-driven selection on major histocompatibility complex (MHC) genes in invasive wild rabbits in Australia

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

The rabbit haemorrhagic disease virus (RHDV) was imported into Australia in 1995 as a biocontrol agent to manage one of the most successful and devastating invasive species, the European rabbit (Oryctolagus cuniculus cuniculus). During the first disease outbreaks, RHDV caused mortality rates of up to 97% and reduced Australian rabbit numbers to very low levels. However, recently increased genetic resistance to RHDV and strong population growth has been reported. Major histocompatibility complex (MHC) class I immune genes are important for immune responses against viruses, and a high MHC variability is thought to be crucial in adaptive processes under pathogen-driven selection. We asked whether strong population bottlenecks and presumed genetic drift would have led to low MHC variability in wild Australian rabbits, and if the retained MHC variability was enough to explain the increased resistance against RHD. Despite the past bottlenecks we found a relatively high number of MHC class I sequences distributed over 2–4 loci. We identified positive selection on putative antigen-binding sites of the MHC. We detected evidence for RHDV-driven selection as one MHC supertype was negatively associated with RHD survival, fitting expectations of frequency-dependent selection. Gene duplication and pathogen-driven selection are possible (and likely) mechanisms that maintained the adaptive potential of MHC genes in Australian rabbits. Our findings not only contribute to a better understanding of the evolution of invasive species, they are also important in the light of planned future rabbit biocontrol in Australia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aguilar A, Roemer G, Debenham S et al (2004) High MHC diversity mainteined by balancing selection in an otherwise genetically monomorphic mammal. PNAS 101:3490–3494

    PubMed  PubMed Central  CAS  Google Scholar 

  • Alcaide M (2010) On the relative roles of selection and genetic drift in shaping MHC variation. Mol Ecol 19:3842–3844

    PubMed  Google Scholar 

  • Alföldi J, Palma FD, Lindblad-Toh K (2009) The European rabbit genome. In: Houdebine L-M, Fan J (eds) Rabbit biotechnology. Springer, Netherlands, Dordrecht, p 129

    Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  Google Scholar 

  • Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc

  • Aronesty E (2011) Command-line tools for processing biological sequencing data. http://code.google.com/p/ea-utils

  • Babik W, Durka W, Radwan J (2005) Sequence diversity of the MHC DRB gene in the Eurasian beaver (Castor fiber). Mol Ecol 14:4249–4257

    PubMed  CAS  Google Scholar 

  • Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    PubMed  CAS  Google Scholar 

  • Barton K (2015) MuMIn: multi-model inference. R package version 1.14.0. http://CRAN.R-project.org/package=MuMIn

  • Bjorkman P, Parham P (1990) Structure, function, and diversity of class I Major Histocompatibility Complex molecules. Annu Rev Biochem 59:253–288

    PubMed  CAS  Google Scholar 

  • Bjorkman PJ, Saper MA, Samraoui B et al (1987) The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens. Nature 329:512–518

    PubMed  CAS  Google Scholar 

  • Blackburn TM, Lockwood JL, Cassey P (2015) The influence of numbers on invasion success. Mol Ecol 24:1942–1953

    PubMed  Google Scholar 

  • Burdon JJ, Thrall PH, Ericson L (2013) Genes, communities & invasive species: understanding the ecological and evolutionary dynamics of host–pathogen interactions. Curr Opin Plant Biol 16:400–405

    PubMed  CAS  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New York

    Google Scholar 

  • Capucci L, Scicluna M, Lavazza A (1991) Diagnosis of viral haemorrhagic disease of rabbits and the European brown hare syndrome. Rev Sci Tech 10:347–370

    PubMed  CAS  Google Scholar 

  • Capucci L, Nardin A, Lavazza A (1997) Seroconversion in an industrial unit of rabbits infected with a non-pathogenic rabbit haemorrhagic disease-like virus. Vet Res 140:647–650

    CAS  Google Scholar 

  • Carneiro M, Rubin C-J, Di Palma F et al (2014) Rabbit genome analysis reveals a polygenic basis for phenotypic change during domestication. Science 345:1074–1079

    PubMed  PubMed Central  CAS  Google Scholar 

  • Castro-Prieto A, Wachter B, Sommer S (2011) Cheetah paradigm revisited: MHC diversity in the world's largest free-ranging population. Mol Biol Evol 28:1455–1468

  • Castro-Prieto A, Wachter B, Melzheimer J et al (2012) Immunogenetic variation and differential pathogen exposure in free-ranging cheetahs across namibian farmlands. PLoS ONE 7:e49129

    PubMed  PubMed Central  CAS  Google Scholar 

  • Cheng Y, Sanderson C, Jones M, Belov K (2012) Low MHC class II diversity in the Tasmanian devil (Sarcophilus harrisii). Immunogenetics 64:525–533

    PubMed  CAS  Google Scholar 

  • Claire L, Murielle R, Stéphane G et al (2009) Diversifying selection on MHC class I in the house sparrow (Passer domesticus). Mol Ecol 18:1331–1340

    Google Scholar 

  • Coltman DW, Pilkington JG, Smith JA, Pemberton JM (1999) Parasite-mediated selection against inbred Soay sheep in a free-living, island population. Evolution 53:1259–1267

    PubMed  Google Scholar 

  • Cooke BD (2012) Rabbits: manageable environmental pests or participants in new Australian ecosystems? Wildl Res 39:279–289

    Google Scholar 

  • Cooke BD (2014) Australia’s war against rabbit. The story of rabbit haemorrhagic disease. CSIRO Publishing, Canberra

    Google Scholar 

  • Cooke BD, Berman D (2000) Effect of inoculation route and ambient temperature on the survival time of rabbits, Oryctolagus cuniculus (L.), infected with rabbit haemorrhagic disease virus. Wildl Res 27:137–142

    Google Scholar 

  • Cooke BD, Robinson AJ, Merchant JC, Nardin A, Capucci L (2000) Use of ELISAs in field studies of rabbit haemorrhagic disease (RHD) in Australia. Epidemiol Infect 124:563–576

    PubMed  PubMed Central  CAS  Google Scholar 

  • Cooke B, Chudleigh P, Simpson S, Saunders G (2013) The economic benefits of the biological control of rabbits in Australia, 1950–2011. Aust Econ Hist Rev 53:91–107

    Google Scholar 

  • Delport W, Poon AFY, Frost SDW, Kosakovsky Pond SL (2010) Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics 26:2455–2457

    PubMed  PubMed Central  CAS  Google Scholar 

  • Dlugosch KM, Anderson SR, Braasch J, Cang FA, Gillette HD (2015) The devil is in the details: genetic variation in introduced populations and its contributions to invasion. Mol Ecol 24:2095–2111

    PubMed  Google Scholar 

  • Dodt M, Roehr J, Ahmed R, Dieterich C (2012) FLEXBAR—flexible barcode and adapter processing for next-generation sequencing platforms. Biology 1:895

    PubMed  PubMed Central  Google Scholar 

  • Doherty PC, Zinkernagel RM (1975) Enhanced immunological surveillance in mice heterozygous at the H-2 gene complex. Nature 256:50–52

    PubMed  CAS  Google Scholar 

  • Doytchinova IA, Flower DR (2005) In silico identification of supertypes for class II MHCs. J Immunol 174:7085–7095

    PubMed  CAS  Google Scholar 

  • Eden J-S, Read AJ, Duckworth JA, Strive T, Holmes EC (2015) Resolving the origin of rabbit haemorrhagic disease virus (RHDV): insights from an investigation of the viral stocks released in Australia. J Virol. doi:10.1128/JVI.01100-15

  • Ejsmond M, Radwan J (2011) MHC diversity in bottlenecked populations: a simulation model. Conserv Genet 12:129–137

    Google Scholar 

  • Ejsmond MJ, Radwan J (2015) Red queen processes drive positive selection on Major Histocompatibility Complex (MHC) genes. PLoS Comput Biol 11:e1004627

    PubMed  PubMed Central  Google Scholar 

  • Ellegren H, Hartman G, Johansson M, Andersson L (1993) Major histocompatibility complex monomorphism and low levels of DNA fingerprinting variability in a reintroduced and rapidly expanding population of beavers. Proc Natl Acad Sci 90:8150–8153

    PubMed  PubMed Central  CAS  Google Scholar 

  • Elsworth PG, Kovaliski J, Cooke BD (2012) Rabbit haemorrhagic disease: are Australian rabbits (Oryctolagus cuniculus) evolving resistance to infection with Czech CAPM 351 RHDV? Epidemiol Infect 140:1972–1981

    PubMed  CAS  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    PubMed  Google Scholar 

  • Fontanesi L, Martelli PL, Scotti E et al (2012) Exploring copy number variation in the rabbit (Oryctolagus cuniculus) genome by array comparative genome hybridization. Genomics 100:245–251

    PubMed  CAS  Google Scholar 

  • Hambuch T, Lacey EA (2002) Enhanced selection for MHC diversity in social tuco-tucos. Evolution 56:841–845

    PubMed  Google Scholar 

  • Hughes AL, Nei M (1988) Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature 335:167–170

    PubMed  CAS  Google Scholar 

  • Kerr PJ (2012) Myxomatosis in Australia and Europe: a model for emerging infectious diseases. Antiviral Res 93:387–415

    PubMed  CAS  Google Scholar 

  • Klein J (1986) Natural history of the major histocompatibility complex. Wiley, New York

    Google Scholar 

  • Klein J, Bontrop RE, Dawkins RL et al (1993) Nomenclature for the major histocompatibility complexes of different species: a proposal. In: Solheim BG, Ferrone S, Möller E (eds) The HLA system in clinical transplantation: basic concepts and importance. Springer, Berlin, pp 407–411

    Google Scholar 

  • Klein J, Sato A, Nagl S, O’HUigÃn C (1998) Molecular trans-species polymorphism. Annu Rev Ecol Syst 29:1–21

    Google Scholar 

  • Kondrashov FA (2012) Gene duplication as a mechanism of genomic adaptation to a changing environment. Proc R Soc Lond B Biol Sci 279:5048–5057

    Google Scholar 

  • Kondrashov F, Rogozin I, Wolf Y, Koonin E (2002) Selection in the evolution of gene duplications. Genome Biol 3:1–9

    Google Scholar 

  • Korstanje R, Gillissen GF, Versteeg SA et al (2003) Mapping of rabbit microsatellite markers using chromosome-specific libraries. J Hered 94:161–169

    PubMed  CAS  Google Scholar 

  • Kosakovsky Pond SL, Frost SDW (2005) not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol Biol Evol 22:1208–1222

    PubMed  Google Scholar 

  • Kosakovsky Pond SL, Posada D, Gravenor MB, Woelk CH, Frost SDW (2006) Automated phylogenetic detection of recombination using a genetic algorithm. Mol Biol Evol 23:1891–1901

    PubMed  Google Scholar 

  • Kovaliski J, Sinclair R, Mutze G et al (2013) Molecular epidemiology of rabbit haemorrhagic disease virus in Australia: when one became many. Mol Ecol 23:408–420

    PubMed  PubMed Central  Google Scholar 

  • Kubinak JL, Ruff JS, Cornwall DH et al (2013) Experimental viral evolution reveals major histocompatibility complex polymorphisms as the primary host factors controlling pathogen adaptation and virulence. Genes Immun 14:365–372

    PubMed  PubMed Central  CAS  Google Scholar 

  • Lawson Handley L-J, Estoup A, Evans DM et al (2011) Ecological genetics of invasive alien species. Biocontrol 56:409–428

    Google Scholar 

  • Lemos de Matos A, McFadden G, Esteves PJ (2014) Evolution of viral sensing RIG-I-like receptor genes in Leporidae genera Oryctolagus, Sylvilagus, and Lepus. Immunogenetics 66:43–52

    PubMed  CAS  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    PubMed  CAS  Google Scholar 

  • Lillie M, Grueber C, Sutton J et al (2015) Selection on MHC class II supertypes in the New Zealand endemic Hochstetter’s frog. BMC Evol Biol 15:63

    PubMed  PubMed Central  Google Scholar 

  • Lin ML, Zhan Y, Proietto AI et al (2008) Selective suicide of cross-presenting CD8 + dendritic cells by cytochrome c injection shows functional heterogeneity within this subset. Proc Natl Acad Sci 105:3029–3034

    PubMed  PubMed Central  CAS  Google Scholar 

  • Loiseau C, Zoorob R, Garnier S et al (2008) Antagonistic effects of a Mhc class I allele on malaria-infected house sparrows. Ecol Lett 11:258–265

    PubMed  Google Scholar 

  • Magalhães V, Abrantes J, Munõz-Pajares AJ, Esteves PJ (2015) Genetic diversity comparison of the DQA gene in European rabbit (Oryctolagus cuniculus) populations. Immunogenetics 67:579–590

    PubMed  Google Scholar 

  • Martin DP, Murrell B, Golden M, Khoosal A, Muhire B (2015) RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evol. doi:10.1093/ve/vev003

    Article  PubMed  PubMed Central  Google Scholar 

  • Mazerolle MJ (2016) AICcmodavg: model selection and multimodel inference based on (Q)AIC(c). R package version 2.0-4. http://CRAN.R-project.org/package=MuMIn

  • Miller C, Joyce P, Waits L (2002) Assessing allelic dropout and genotype reliability using maximum likelihood. Genetics 160:357–366

    PubMed  PubMed Central  Google Scholar 

  • Mougel F, Mounolou J-C, Monnerot M (1997) Nine polymorphic microsatellite loci in the rabbit, Oryctolagus cuniculus. Anim Genet 28:58–71

    PubMed  CAS  Google Scholar 

  • Murrell B, Wertheim JO, Moola S et al (2012) Detecting individual sites subject to episodic diversifying selection. PLoS Genet 8:e1002764

    PubMed  PubMed Central  CAS  Google Scholar 

  • Murrell B, Moola S, Mabona A et al (2013) FUBAR: a fast, unconstrained Bayesian approximation for inferring selection. Mol Biol Evol 30:1196–1205

    PubMed  PubMed Central  CAS  Google Scholar 

  • Mutze G, Cooke B, Alexander P (1998) The initial impact of rabbit hemorrhagic disease on European rabbit populations in South Australia. J Wildl Dis 34:221–227

    PubMed  CAS  Google Scholar 

  • Mutze G, Bird P, Jennings S et al (2015) Recovery of South Australian rabbit populations from the impact of rabbit haemorrhagic disease. Wildl Res 41:552–559

    Google Scholar 

  • Oppelt C, Starkloff A, Rausch P, Von Holst D, Rödel HG (2010) Major histocompatibility complex variation and age-specific endoparasite load in subadult European rabbits. Mol Ecol 19:4155–4167

    PubMed  CAS  Google Scholar 

  • Otting N, Heijmans CMC, Noort RC et al (2005) Unparalleled complexity of the MHC class I region in rhesus macaques. Proc Natl Acad Sci USA 102:1626–1631

    PubMed  PubMed Central  CAS  Google Scholar 

  • Peacock D, Abbott I (2013) The role of quoll (Dasyurus) predation in the outcome of pre-1900 introductions of rabbits (Oryctolagus cuniculus) to the mainland and islands of Australia. Aust J Zool 61:206–280

    Google Scholar 

  • Peacock D, Sinclair R (2009) Longevity record for a wild European rabbit, Oryctolagus cuniculus, from South Australia. Aust Mammal 31:65–66

    Google Scholar 

  • Piertney SB, Oliver MK (2006) The evolutionary ecology of the major histocompatibility complex. Heredity 96:7–21

    PubMed  CAS  Google Scholar 

  • Pinheiro A, Woof JM, Almeida T et al (2014) Leporid immunoglobulin G shows evidence of strong selective pressure on the hinge and CH3 domains. Open Biol. doi:10.1098/rsob.140088

    Article  PubMed  PubMed Central  Google Scholar 

  • Pond SLK, Frost SDW, Muse SV (2005) HyPhy: hypothesis testing using phylogenies. Bioinformatics 21:676–679

    PubMed  CAS  Google Scholar 

  • Queney G, Ferrand N, Marchandeau S et al (2000) Absence of a genetic bottleneck in a wild rabbit (Oryctolagus cuniculus) population exposed to a severe viral epizootic. Mol Ecol 9:1253–1264

    PubMed  CAS  Google Scholar 

  • Radwan J, Biedrzycka A, Babik W (2010) Does reduced MHC diversity decrease viability of vertebrate populations? Biol Conserv 143:537–544

    PubMed  Google Scholar 

  • Reche PA, Reinherz EL (2003) Sequence variability analysis of human class I and class II MHC molecules: functional and structural correlates of amino acid polymorphisms. J Mol Biol 331:623–641

    PubMed  CAS  Google Scholar 

  • Roos C, Walter L (2004) Considerable haplotypic diversity in the RT1-CE class I gene region of the rat major histocompatibility complex. Immunogenetics 56:773–777

    PubMed  Google Scholar 

  • R Development Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing., Vienna, Austria. http://www.R-project.org/

  • Sambrook J, Fritsch E, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbour Laboratory Press, New York

    Google Scholar 

  • Sandberg M, Eriksson L, Jonsson J, Sjöström M, Wold S (1998) New chemical descriptors relevant for the design of biologically active peptides. A multivariate characterization of 87 amino acids. J Med Chem 41:2481–2491

    PubMed  CAS  Google Scholar 

  • Saunders G, Cooke B, McColl K, Shine R, Peacock T (2010) Modern approaches for the biological control of vertebrate pests: an Australian perspective. Biol Control 52:288–295

    Google Scholar 

  • Schwensow N, Fietz J, Dausmann K, Sommer S (2007) Neutral versus adaptive variation in parasite resistance: importance of MHC-supertypes in a free-ranging primate. Heredity 99:265–277

    PubMed  CAS  Google Scholar 

  • Schwensow NI, Cooke B, Kovaliski J et al (2014) Rabbit haemorrhagic disease: virus persistence and adaptation in Australia. Evol Appl 7:1056–1067

    PubMed  PubMed Central  Google Scholar 

  • Sepil I, Lachish S, Sheldon BC (2013) Mhc-linked survival and lifetime reproductive success in a wild population of great tits. Mol Ecol 22:384–396

    PubMed  Google Scholar 

  • Sommer S (2005a) The importance of immune gene variability (MHC) in evolutionary ecology and conservation. Front Zool. doi:10.1186/1742-9994-1182-1116

    Article  PubMed  PubMed Central  Google Scholar 

  • Sommer S (2005b) Major histocompatibility complex and mate choice in a monogamous rodent. Behav Ecol Sociobiol 58:181–189

    Google Scholar 

  • Sommer S, Courtiol A, Mazzoni C (2013) MHC genotyping of non-model organisms using next-generation sequencing: a new methodology to deal with artefacts and allelic dropout. BMC Genom 14:542

    Google Scholar 

  • Spurgin LG, Richardson DS (2010) How pathogens drive genetic diversity: MHC, mechanisms and misunderstandings. Proc R Soc Lond B. doi:10.1098/rspb.2009.2084

    Article  Google Scholar 

  • Spurgin LG, Van Oosterhout C, Illera JC et al (2011) Gene conversion rapidly generates major histocompatibility complex diversity in recently founded bird populations. Mol Ecol 20:5213–5225

    PubMed  CAS  Google Scholar 

  • Surridge AK, Bell DJ, Rico C, Hewitt GM (1997) Polymorphic microsatellite loci in the European rabbit (Oryctolagus cuniculus) are also amplified in other lagomorph species. Anim Genet 28:302–305

    PubMed  CAS  Google Scholar 

  • Surridge AK, Bell DJ, Hewitt GM (1999) From population structure to individual behaviour: genetic analysis of social structure in the European wild rabbit (Oryctolagus cuniculus). Biol J Linn Soc 68:57–71

    Google Scholar 

  • Surridge A, van der Loo W, Abrantes J et al (2008) Diversity and evolutionary history of the MHC DQA gene in leporids. Immunogenetics 60:515–525

    PubMed  CAS  Google Scholar 

  • Sutton JT, Nakagawa S, Robertson BC, Jamieson IG (2011) Disentangling the roles of natural selection and genetic drift in shaping variation at MHC immunity genes. Mol Ecol 20:4408–4420

    PubMed  Google Scholar 

  • Takahata N, Nei M (1990) Allelic genealogy under overdominant and frequency-dependent selection and polymorphism of major histocompatibility complex loci. Genetics 124:967–978

    PubMed  PubMed Central  CAS  Google Scholar 

  • Teacher AGF, Garner TWJ, Nichols RA (2009) Evidence for directional selection at a novel major histocompatibility class i marker in wild common frogs (Rana temporaria) Exposed to a Viral Pathogen (Ranavirus). PLoS ONE 4:e4616

    PubMed  PubMed Central  Google Scholar 

  • van Haeringen W, den Bieman M, van Zutphen L, van Lith H (1996) Polymorphic microsatellite DNA markers in the rabbit (Oryctolagus cuniculus). J Exp Anim Sci 38:49–57

    PubMed  Google Scholar 

  • van Oosterhout C, Joyce DA, Cummings SM et al (2006) Balancing selection, random genetic drift, and genetic variation at the major histocompatibility complex in two wild populations of guppies (Poecilia reticulta). Evolution 60:2562–2574

    PubMed  Google Scholar 

  • Weber DS, Stewart BS, Schienman J, Lehman N (2004) Major histocompatibility complex variation at three class II loci in the northern elephant seal. Mol Ecol 13:711–718

    PubMed  CAS  Google Scholar 

  • Wells K, Brook BW, Lacy RC et al (2015) Timing and severity of immunizing diseases in rabbits is controlled by seasonal matching of host and pathogen dynamics. J R Soc Interface. doi:10.1098/rsif.2014.1184

    Article  PubMed  PubMed Central  Google Scholar 

  • White TA, Perkins SE (2012) The ecoimmunology of invasive species. Funct Ecol 26:1313–1323

    Google Scholar 

  • Williams CK, Parer I, Coman BJ, Burley J, Braysher ML (1995) Managing vertebrate pests: rabbits. Bureau of Resource Sciences/CSIRO Division of Wildlife and Ecology, Australian Government Publishing Service, Canberra

    Google Scholar 

  • Xu B, Yang Z (2013) pamlX: a graphical user interface for PAML. Mol Biol Evol 30:2723–2724

    PubMed  CAS  Google Scholar 

  • Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591

    PubMed  CAS  Google Scholar 

  • Yang Z, Wong WSW, Nielsen R (2005) Bayes empirical bayes inference of amino acid sites under positive selection. Mol Biol Evol 22:1107–1118

    PubMed  CAS  Google Scholar 

  • Zenger KR, Richardson BJ, Vachot-Griffin A-M (2003) A rapid population expansion retains genetic diversity within European rabbits in Australia. Mol Ecol 12:789–794

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Invasive Animals CRC for accommodation during the 2010 field season. This study was made possible by the Priority Programme of the German Science Foundation (DFG) ‘Host-parasite co-evolution—rapid reciprocal adaptation and its genetic basis’ (SPP 1399, PI: So 428/7-1). We thank the South Australian Research and Development Institute for access to the Turretfield Research Station. We thank two anonymous referees for very useful comments on a previous draft of the MS. NS and PC were supported by grants and fellowships from the Australian Research Council.

Funding

This study was funded by the Priority Programme of the German Science Foundation (DFG) ‘Host-parasite co-evolution—rapid reciprocal adaptation and its genetic basis’ (SPP 1399, PI: So 428/7-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Schwensow.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Fig. 1

Nucleotide and amino acid alignment. Sequence alignment of MHC I alleles from wild rabbits from the Turretfield population/Australia. The sequence corresponds to the amino acid positions 104-168 of the α2 domain of the human MHC I sequence. Asterisks indicate putative human ABS (Bjorkman and Parham 1990; Bjorkman et al. 1987), ‘x’ indicates the positions where evidence for positive selection on the rabbit MHC alleles was identified using the indicated statistical approaches. Dots indicate identity to the top sequence. The nucleotide sequences of MHC class I-Orcu*01a, MHC class I-Orcu*01b and MHC class I-Orcu*01c translated into the same amino acid sequence. a see Table 1 for statistics, bcodons with significance level > 0.1, ccodons with Bayes factor > 50, dcodons with posterior probability ≥ 0.9. (DOCX 14 kb)

Supplementary material 2 (DOCX 16 kb)

Supplementary material 3 (XLSX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwensow, N., Mazzoni, C.J., Marmesat, E. et al. High adaptive variability and virus-driven selection on major histocompatibility complex (MHC) genes in invasive wild rabbits in Australia. Biol Invasions 19, 1255–1271 (2017). https://doi.org/10.1007/s10530-016-1329-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-016-1329-5

Keywords

Navigation