Skip to main content

Advertisement

Log in

Effect of shipping traffic on biofouling invasion success at population and community levels

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

The relationship between shipping and invasion success in marine waters has rarely been demonstrated empirically. In commercial ports, greater shipping activity is expected to increase invasion success at both the community and population levels by altering the diversity of exotic species discharged (colonization pressure) and the number of introduction events (propagule number). This study sought large-scale correlations between metrics of shipping activities and exotic fouling species diversity at the community (species richness evaluated using standardized port surveys) and population (genetic diversity) levels. The richness of exotic fouling species was evaluated at the community level by sampling 15 commercial ports in marine temperate Canadian waters. At the population level, we investigated genetic diversity of the model fouling species Botryllus schlosseri in five commercial ports, by identifying 262 individuals at the mitochondrial cytochrome c oxidase subunit I gene and eight polymorphic nuclear microsatellites. Measures of community- and population-level richness were related to various measures of propagule number and colonization pressure related to ship ballast and hull biofouling. Patterns of exotic fouling diversity are consistent with the hypothesis that increased shipping arrivals increase establishment success at both the community and population levels. As expected for fouling exotic species, ballast water was a less important vector; introduction success was best correlated to the number of arrivals of non-merchant ships from close regions, suggesting that this vector is important for successful invasion of this group of organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams JK, Ellis SM, Chan FT, Bronnenhuber JE, Doolittle AG, Simard N, McKenzie CH, Martin JL, Bailey SA (2013) Relative risk assessment for ship-mediated introductions of aquatic nonindigenous species to the Atlantic Region of Canada. Can Sci Advis Secr Res Doc 2012/116:vi + 404

    Google Scholar 

  • Allee WC (1931) Animal aggregations: a study in general sociology. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Allendorf FW, Lundquist LL (2003) Introduction: population biology, evolution, and control of invasive species. Conserv Biol 17:24–30

    Article  Google Scholar 

  • Ashton GV, Stevens MI, Hart MC, Green DH, Burrows MT et al (2008) Mitochondrial DNA reveals multiple Northern Hemisphere introductions of Caprella mutica (Crustacea, Amphipoda). Mol Ecol 17:1293–1303

    Article  CAS  PubMed  Google Scholar 

  • Ayre DJ, Davis AR, Billingham M, Llorens T, Styan C (1997) Genetic evidence for contrasting patterns of dispersal in solitary and colonial ascidians. Mar Biol 130:51–61

    Article  Google Scholar 

  • Bailey SA, Deneau MG, Jean L, Wiley CJ, Leung B et al (2011) Evaluating efficacy of an environmental policy to prevent biological invasions. Environ Sci Technol 45:2554–2561

    Article  CAS  PubMed  Google Scholar 

  • Ben-Shlomo R, Douek J, Rinkevich B (2001) Heterozygote deficiency and chimerism in remote populations of a colonial ascidian from New Zealand. Mar Ecol Prog Ser 209:109–117

    Article  Google Scholar 

  • Ben-Shlomo R, Paz G, Rinkevich B (2006) Postglacial-period and recent invasions shape population genetics of botryllid ascidians along European Atlantic coasts. Ecosystems 9:1118–1127

    Article  Google Scholar 

  • Ben-Shlomo R, Motro U, Paz G, Rinkevich B (2008) Pattern of settlement and natural chimerism in the colonial urochordate Botryllus schlosseri. Genetica 132:51–58

    Article  PubMed  Google Scholar 

  • Ben-Shlomo R, Reem E, Douek J, Rinkevich B (2010) Population genetics of the invasive ascidian Botryllus schlosseri from South American coasts. Mar Ecol Prog Ser 412:85–92

    Article  Google Scholar 

  • Berman J, Harris L, Lambert W, Buttrick M, Dufresne M (1992) Recent invasions of the Gulf of Maine: three contrasting ecological histories. Conserv Biol 6:435–442

    Article  Google Scholar 

  • Berrill NJ (1950) The Tunicata with an account of the British species. Ray Society, London

    Google Scholar 

  • Blanchet FG, Legendre P, Borcard D (2008) Forward selection of explanatory variables. Ecology 89:2623–2632

    Article  PubMed  Google Scholar 

  • Bossenbroek JM, Johnson LE, Peters B, Lodge DM (2007) Forecasting the expansion of zebra mussels in the United States. Conserv Biol 21:800–810

    Article  PubMed  Google Scholar 

  • Bouchemousse S, Bishop JDD, Viard F (2016) Contrasting global genetic patterns in two biologically similar, widespread and invasive Ciona species (Tunicata, Ascidiacea). Sci Rep 6:24875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Briski E, Ghabooli S, Bailey SA, MacIsaac HJ (2012) Invasion risk posed by macroinvertebates transported in ship’s ballast tanks. Biol Invasions 14:1843–1850

    Article  Google Scholar 

  • Buchan LAJ, Padilla DK (1999) Estimating the probability of long-distance overland dispersal of invading aquatic species. Ecol Appl 9:254–265

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multi-model inference: a practical information-theoretic approach. Springer, New York

    Google Scholar 

  • Canadian wildlife federation (2008) Invasive species database in Canada. http://www.cwf-fcf.org/invasive/chooseSC.asp. Accessed 22 Feb 2009

  • Carlton JT (1979) History, biogeography, and ecology of the introduced marine and estuarine invertebrates of the Pacific coast of North America. Ph.D. thesis, University of California

  • Carlton JT (1985) Transoceanic and interoceanic dispersal of coastal marine organisms: the biology of ballast water. Oceanogr Mar Biol 23:313–371

    Google Scholar 

  • Carlton JT (1996) Biological invasions and cryptogenic species. Ecology 77:1653–1655

    Article  Google Scholar 

  • Carlton JT (2003) A checklist of the introduced and cryptogenic marine and estuarine organisms from Nova Scotia to Long Island Sound, 2nd edn. Williams College—Mystic Seaport Maritime Studies Program, Seaport

  • Carver CE, Mallet AL, Vercaemer B (2006a) Biological synopsis of the colonial tunicates, Botryllus schlosseri and Botrylloides violaceus. Can Man Rep Fish Aquat Sci 2747:v + 42

    Google Scholar 

  • Carver CE, Mallet AL, Vercaemer B (2006b) Biological synopsis of the solitary tunicate Ciona intestinalis. Can Man Rep Fish Aquat Sci 2746:v + 55

    Google Scholar 

  • Casas-Monroy O, Linley RD, Adams JK, Chan FT, Drake DAR, Bailey SA (2014) National risk assessment for introduction of aquatic nonindigenous species to Canada by Ballast water. Can Sci Adv Sec Res Doc 2014/128:vi + 73

  • Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659

    Article  CAS  PubMed  Google Scholar 

  • Cohen AN, Carlton JT (1998) Accelerating invasion rate in a highly invaded estuary. Science 279:555–558

    Article  CAS  PubMed  Google Scholar 

  • Coutts ADM, Taylor MD (2004) A preliminary investigation of biosecurity risks associated with biofouling on merchant vessels in New Zealand. N Z J Mar Fresh Res 38:215–229

    Article  Google Scholar 

  • Darling JA, Herborg LM, Davidson IC (2012) Intracoastal shipping drives patterns of regional population expansion by an invasive marine invertebrate. Ecol Evol 2:2557–2566

    Article  PubMed  PubMed Central  Google Scholar 

  • Davidson IC, McCann LD, Fofonoff PW, Sytsma MD, Ruiz GM (2008) The potential for hull-mediated species transfers by obsolete ships on their final voyages. Divers Distrib 14:518–529

    Article  Google Scholar 

  • Davidson IC, Brown CW, Sytsma MD, Ruiz GM (2009) The role of containerships as transfer mechanisms of marine biofouling species. Biofouling 25:645–655

    Article  PubMed  Google Scholar 

  • DiBacco C, Humphrey DB, Nasmith LE, Levings CD (2012) Ballast water transport of non-indigenous zooplankton to Canadian ports. ICES J Mar Sci 69:483–491

    Article  Google Scholar 

  • Dijkstra J, Harris LG, Westerman E (2007) Distribution and long-term temporal patterns of four invasive colonial ascidians in the gulf of Maine. J Exp Mar Biol Ecol 342:61–68

    Article  Google Scholar 

  • Dlugosch KM, Parker IM (2008) Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol 17:431–449

    Article  CAS  PubMed  Google Scholar 

  • Drake JM, Lodge DM (2004) Global hot spots of biological invasions: evaluating options for ballast-water management. Proc R Soc B Biol Sci 271:575–580

    Article  Google Scholar 

  • Drake JM, Lodge DM (2006) Allee effects, propagule pressure and the probability of establishment: risk analysis for biological invasions. Biol Invasions 8:365–375

    Article  Google Scholar 

  • Elphinstone MS, Hinten GN, Anderson MJ, Nock CJ (2003) An inexpensive and high-throughput procedure to extract and purify total genomic DNA for population studies. Mol Ecol Notes 3:317–320

    Article  CAS  Google Scholar 

  • Elton CS (1958) The ecology of invasions by animals and plants. Methuen, London 181p

    Book  Google Scholar 

  • Frisch D, Havel JE, Weider LJ (2013) The invasion history of the exotic freshwater zooplankter Daphnia lumholtzi (Cladocera, Crustacea) in North America: a genetic analysis. Biol Invasions 15:817–828

    Article  Google Scholar 

  • Goudet J (2002) FSTAT, a program to estimate and test gene diversities and fixation indices version 2.9.3.2

  • Government of Canada (2006) Ballast water control and management regulations. Can Gazette 140(13). http://gazette.gc.ca/rp-pr/p2/2011/2011-11-09/html/sor-dors237-fra.html. Accessed 12 Sept 2014

  • Harvey M, Gilbert M, Gauthier D, Ried DM (1999) A preliminary assessment of risks for the ballast water-mediated introduction of nonindigenous marine organisms in the Estuary and Gulf of St. Lawrence. Can Tech Rep Fish Aquat Sci 2268:x + 56p

    Google Scholar 

  • Hedge LH, Connor WA, Johston E (2012) Manipulating the intrinsic parameters of propagule pressure: implication for bio-invasion. Ecosphere 3:art48

    Article  Google Scholar 

  • Herborg LM, Jerde CL, Lodge DM, Ruiz GM, MacIsaac HJ (2007) Predicting invasion risk using measures of introduction effort and environmental niche models. Ecol Appl 17:663–674

    Article  PubMed  Google Scholar 

  • Hewitt CL, Campbell ML, Thresher RE, Martin RB, Boyd S, Cohen BF, Currie DR, Gomon MF, Keough MJ, Lewis JA, Lockett MM, Mays N, McArthur MA, O’Hara TD, Poore GCB, Ross DJ, Storey MJ, Watson JE, Wilson RS (2004) Introduced and cryptogenic species in Port Phillip Bay, Victoria, Australia. Mar Biol 144:183–202

    Article  Google Scholar 

  • Hewitt CL, Everett RA, Parker N (2009) Examples of current international, regional and national regulatory frameworks for preventing and managing marine. In: Rilov G, Crooks JA (eds) Biological invasions in marine ecosystems: ecological, management, and geographic perspectives. Springer, Heidelberg, pp 335–352

    Chapter  Google Scholar 

  • Hillebrand H (2004) On the generality of the latitudinal diversity gradient. Am Nat 163:192–211

    Article  PubMed  Google Scholar 

  • International maritime organization (2004) Alien invaders in ballast water—new Convention adopted at IMO. http://www.imo.org/blast/mainframe.asp?topic_id=848&doc_id=3475. Accessed Mar 14 2013

  • Johnson JB, Omland KS (2004) Model selection in ecology and evolution. Trends Ecol Evol 19:101–108

    Article  PubMed  Google Scholar 

  • Katsanevakis S, Zenetos A, Belchior C, Cardoso AC (2013) Invading European seas: assessing pathways of introduction of marine aliens. Ocean Coast Manag 76:64–74

    Article  Google Scholar 

  • Kelager A, Pedersen JS, Bruun HH (2013) Multiple introductions and no loss of genetic diversity: invasion history of Japanese Rose, Rosa rugosa, in Europe. Biol Invasions 15:1125–1141

    Article  Google Scholar 

  • Lacoursière-Roussel A, Bock DG, Cristescu ME, Guichard F, Girard P et al (2012a) Disentangling invasion processes in a dynamic shipping-boating network. Mol Ecol 21:4227–4241

    Article  PubMed  Google Scholar 

  • Lacoursière-Roussel A, Forrest BM, Guichard F, Piola RF, McKindsey CW (2012b) Modeling biofouling from boat and source characteristics: a comparative study between Canada and New Zealand. Biol Invasions 14:2301–2314

    Article  Google Scholar 

  • Lambert G (2005) Ecology and natural history of the protochordates. Can J Zool 83:34–50

    Article  Google Scholar 

  • Lambert CC, Lambert G (1998) Non-indigenous ascidians in southern California harbors and marinas. Mar Biol 130:675–688

    Article  Google Scholar 

  • Lambert CC, Lambert G (2003) Persistence and differential distribution of nonindigenous ascidians in harbors of the Southern California Bight. Mar Ecol Prog Ser 259:145–161

    Article  Google Scholar 

  • Lee CE (2002) Evolutionary genetics of invasive species. Trends Ecol Evol 17:386–391

    Article  Google Scholar 

  • Leung B, Bossenbroek JM, Lodge DM (2006) Boats, pathways, and aquatic biological invasions: estimating dispersal potential with gravity models. Biol Invasions 8:241–254

    Article  Google Scholar 

  • Levine JM, D’Antonio CM (2003) Forecasting biological invasions with increasing international trade. Conserv Biol 17:322–326

    Article  Google Scholar 

  • Linley RD, Doolittle AG, Chan FT, O’Neill J, Sutherland T, Bailey SA (2014) Relative risk assessment for ship-mediated introductions of aquatic nonindigenous species to the Pacific Region of Canada. DFO Can Sci Advis Secr Res Doc 2013/043:v + 208

  • Lo VB, Levings CD, Chan KMA (2012) Quantifying potential propagule pressure of aquatic invasive species from the commercial shipping industry in Canada. Mar Pollut Bull 64:295–302

    Article  CAS  PubMed  Google Scholar 

  • Lockwood JL, Cassey P, Blackburn T (2005) The role of propagule pressure in explaining species invasions. Trends Ecol Evol 20:223–228

    Article  PubMed  Google Scholar 

  • Lockwood JL, Cassey P, Blackburn TM (2009) The more you introduce the more you get: the role of colonization pressure and propagule pressure in invasion ecology. Divers Distrib 15:904–910

    Article  Google Scholar 

  • Lu L, Levings CD, Piercy GE (2007) Preliminary investigation on aquatic invasive species of marine and estuarine macroinvertebrates on floating structures in five British Columbia harbours. Can Man Rep Fish Aquat Sci 2814:iii + 30

    Google Scholar 

  • MacIsaac HJ, Robbins TC, Lewis MA (2002) Modeling ships’ ballast water as invasion threats to the Great Lakes. Can J Fish Aquat Sci 59:1245–1256

    Article  Google Scholar 

  • Mckindsey CW, Landry T, O’Beirn FX, Davies IN (2007) Bivalve aquaculture and exotic species: a review of ecological considerations and management issues. J Shellfish Res 26:281–294

    Article  Google Scholar 

  • Minchin D, Floerl O, Savigny D, Occhipinti-Ambrogi A (2006) Small craft and the spread of exotic species. In: Davenberg J, Davenport JL (eds) The ecology of transportation: managing mobility for the environment. Springer, Dordrecht, pp 99–118

    Chapter  Google Scholar 

  • Molecular Ecology Resources Primer Development Consortium, Abdoullaye D, Acevedo I et al (2010) Permanent genetic resources added to molecular ecology resources database 1 August 2009–30 September 2009. Mol Ecol Resour 10:232–236

    Article  CAS  Google Scholar 

  • Moore AM, Vercaemer B, DiBacco C, Sephton D, Ma KCK (2014) Invading Nova Scotia: first records of Didemnum vexillum Kott, 2002 and four more non-indigenous invertebrates in 2012 and 2013. BioInvasions Rec 3:225–234

    Article  Google Scholar 

  • National Research Council (2011) Assessing the relationship between propagule pressure and invasion risk in ballast water. National Academy of Sciences, Washington, p vi + 144

    Google Scholar 

  • NISbase (2008) Generate a species list from the NISbase distributed database system. http://www.nisbase.org/nisbase/index.jsp. Accessed 15 Feb 2009

  • Novak SJ (2007) The role of evolution in the invasion process. Proc Natl Acad Sci USA 104:3671–3672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novak SJ, Mack RN (1993) Genetic variation in Bromus tectorum (Poaceae): comparison between native and introduced populations. Heredity 71:167–176

    Article  Google Scholar 

  • Ojaveer H, Galil BS, Minchin D, Olenin S, Amorim A, Canning-Clode J, Chainho P, Copp GH, Gollasch S, Jelmert A, Lehtiniemi M, McKenzie C, Mikuš J, Miossec L, Occhipinti-Ambrogi A, Pećarević M, Pederson J, Quilez-Badia G, Wijsman JWM, Zenetos A (2014) Ten recommendations for advancing the assessment and management of non-indigenous species in marine ecosystems. Mar Policy 44:160–165

    Article  Google Scholar 

  • Ordóñez V, Pascual M, Rius M, Turon X (2013) Mixed but not admixed: a spatial analysis of genetic variation of an invasive ascidian on natural and artificial substrates. Mar Biol 160:1645–1660

    Article  Google Scholar 

  • Pagnucco KS, Maynard GA, Fera SA, Yan ND, Nalepa TF, Ricciardi A (2015) The future of species invasions in the Great Lakes–St. Lawrence River basin. J Great Lakes Res 41:96–107

    Article  Google Scholar 

  • Pancer Z, Gershon Z, Rinkevich B (1994) Direct typing of polymorphic microsatellites in the colonial ascidian Botryllus schlosseri. Biochem Biophys Res Commun 203:646–651

    Article  CAS  PubMed  Google Scholar 

  • Paolucci EM, Hernandez MR, Potapov A, Lewis MA, MacIsaac HJ (2015) Hybrid system increases efficiency of ballast water treatment. J Appl Ecol 52:348–357

    Article  CAS  Google Scholar 

  • Paz G, Douek J, Caiquing M, Goren M, Rinkevich B (2003) Genetic structure of Botryllus schlosseri (Tunicata) populations from the Mediterranean coast of Israel. Mar Ecol Prog Ser 250:153–162

    Article  CAS  Google Scholar 

  • Posada D (2004) COLLAPSE (Version 1.2). A tool for collapsing sequences to haplotypes. http://darwin.uvigo.es/. Accessed 15 May 2012

  • Posada D, Buckley TR (2004) Model selection and model averaging in phylogenetics: advantages of akaike information criterion and Bayesian approaches over likelihood ratio tests. Syst Biol 53:793–808

    Article  PubMed  Google Scholar 

  • Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  CAS  PubMed  Google Scholar 

  • Puillandre N, Dupas S, Dangles O, Zeddam J-L, Capdevielle-Dulac C et al (2008) Genetic bottleneck in invasive species: the potato tuber moth adds to the list. Biol Invasions 10:319–333

    Article  Google Scholar 

  • Reem E, Douek J, Katzir G, Rinkevich B (2013a) Long-term population genetic structure of an invasive urochordate: the ascidian Botryllus schlosseri. Biol Invasions 15:225–241

    Article  Google Scholar 

  • Reem E, Mohanty I, Katzir G, Rinkevich B (2013b) Population genetic structure and modes of dispersal for the colonial ascidian Botryllus schlosseri along the Scandinavian Atlantic coasts. Mar Ecol Prog Ser 485:143–154

    Article  Google Scholar 

  • Reusser DA, Lee H, Frazier M, Ruiz GM, Fofonoff PW et al (2013) Per capita invasion probabilities: an empirical model to predict rates of invasion via ballast water. Ecol Appl 23:321–330

    Article  PubMed  Google Scholar 

  • Ricciardi A (2006) Patterns of invasions in the Laurentian Great Lakes in the relation to changes in vector activity. Divers Distrib 12:425–433

    Article  Google Scholar 

  • Rinkevich B, Paz G, Douek J, Ben-Shlomo R (2001) Allorecognition and microsatellite allele polymorphism of Botryllus schlosseri from the Adriatic Sea. In: Sawada H, Yokosawa H, Lambert CC (eds) The biology of Ascidians. Springer, Tokyo, pp 426–435

    Chapter  Google Scholar 

  • Roman J (2011) Diluting the founder effect: cryptic invasions expand a marine invader’s range. Proc R Soc B Biol Sci 273:2453–2459

    Article  Google Scholar 

  • Roman J, Darling JA (2007) Paradox lost: genetic diversity and the success of aquatic invasions. Trends Ecol Evol 22:454–464

    Article  PubMed  Google Scholar 

  • Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497

    Article  CAS  PubMed  Google Scholar 

  • Ruiz GM, Carlton JT (2003) Invasion vectors: a conceptual framework for management. In: Ruiz GM, Carlton JT (eds) Invasive species: vectors and management strategies. Island Press, Washington, DC, pp 459–504

  • Ruiz GM, Smith G (2005) Biological study of container vessels arriving to the port of Oakland. Smithsonian Environmental Research Center, Edgewater. http://www.serc.si.edu/labs/marine_invasions/publications/PortOakfinalrep.pdf. Accessed 14 Mar 2013

  • Ruiz GM, Fofonoff P, Steves B, Dalhstrom A (2011) Marine crustacean invasions in North America: a synthesis of historical records and documented impacts. In: Galil BS, Clark PF, Carlton JT (eds) In the wrong place—Alien marine crustaceans: distribution, biology and impacts. Series in Invasion Ecology. Springer, New York, pp 215–250

    Chapter  Google Scholar 

  • Ruiz GM, Fofonoff P, Steves B, Carlton JT (2015) Invasion history and vector dynamics in coastal marine ecosystems: a North American perspective. Aquat Ecosyst Health 18:299–311

    Google Scholar 

  • Sakai AK, Allendorf FW, Holt JS, Lodge DM, Molofsky J et al (2001) The population biology of invasive species. Annu Rev Ecol Syst 32:305–332

    Article  Google Scholar 

  • Scheibling RE, Hennigar AW, Balch T (1999) Destructive grazing, epiphytism, and disease: the dynamics of sea urchin–kelp interactions in Nova Scotia. Can J Fish Aquat Sci 56:2300–2314

    Article  Google Scholar 

  • Scianni C, Brown C, Newsom A, Nedelcheva R, Falkner M, Dobroski N (2013) Biennial report on the California marine invasive species program. Sacramento

  • Seebens H, Gastner MT, Blasius B (2013) The risk of marine bioinvasion caused by global shipping. Ecol Lett 16:782–790

    Article  CAS  PubMed  Google Scholar 

  • Sephton D, Vercaemer B, Nicolas JM, Keays J (2011) Monitoring for invasive tunicates in Nova Scotia, Canada (2006–2009). Aquat Invasion 6:391–403

    Article  Google Scholar 

  • Simberloff D, Von Holle B (1999) Positive interaction of nonindigenous species: invasional meltdown. Biol Invasions 1:31–32

    Article  Google Scholar 

  • Simkanin C, Davidson I, Falkner M, Systsma M, Ruiz GM (2009) Intra-coastal ballast water flux and the potential for secondary spread of non-native species on the U.S. West Coast. Mar Pollut Bull 58:366–374

    Article  CAS  PubMed  Google Scholar 

  • Smith DL, Wonham MJ, McCann LD, Ruiz GM, Hines AH, et al. (1999) Invasion pressure to a ballast-flooded estuary and an assessment of inoculants survival. Biol Invasions 1:67–87

    Article  Google Scholar 

  • Stachowicz JJ, Whitlatch RB, Osman RW (1999) Species diversity and invasion resistance in a marine ecosystem. Science 286:1577–1579

    Article  CAS  PubMed  Google Scholar 

  • State of Hawaii (2011) Budgetary and other issues regarding invasive species. http://archive.jan2013.hawaii.gov/dlnr/reports-to-the-legislature/2012/FW11-Invasive-Species-Report-Chapter-194-Act-213-SLH08.pdf. Accessed Mar 14 2013

  • Statistics Canada (2016) Invasive species database in Canada. http://www5.statcan.gc.ca/olc-cel/olc.action?ObjId=54-205-X&ObjType=2&lang=en&Limit=1. Accessed 5 July 2016

  • Stoner DS, Quattro JM, Weissman IL (1997) Highly polymorphic microsatellite loci in the colonial ascidian Botryllus schlosseri. Mol Mar Biol Biotech 6:163–171

    CAS  Google Scholar 

  • Stoner DS, Ben-Shlomo R, Rinkevich B, Weissman IL (2002) Genetic variability of Botryllus schlosseri invasions to the east and west coasts of the USA. Mar Ecol Prog Ser 243:93–100

    Article  Google Scholar 

  • Suarez AV, Tsutsui ND (2008) The evolutionary consequences of biological invasions. Mol Ecol 17:351–360

    Article  PubMed  Google Scholar 

  • Sylvester F, Kalaci O, Leung B, Lacoursière-Roussel A, Clarke Murray C et al (2011) Hull fouling as an invasion vector: can simple models explain a complex problem? J Appl Ecol 48:415–423

    Article  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Tilman D (2004) Niche tradeoffs, neutrality, and community structure: a stochastic theory of resource competition, invasion, and community assembly. Proc Natl Acad Sci USA 101:10854–10861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tonione MA, Reeder N, Moritz CC (2011) High genetic diversity despite the potential for stepping-stone colonizations in an invasive species of gecko on Moorea, French Polynesia. PLoS One 6:e26874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Von Holle B, Simberloff D (2005) Ecological resistance to biological invasion overwhelmed by propagule pressure. Ecology 86:3212–3218

    Article  Google Scholar 

  • Wasson K, Zabin CJ, Bedinger L, Diaz MC, Pearse JS (2001) Biological invasions of estuaries without international shipping: the importance of intraregional transport. Biol Conserv 102:143–153

    Article  Google Scholar 

  • Williams SL (2007) Introduced species in seagrass ecosystems: status and concerns. J Exp Mar Biol Ecol 350:89–110

    Article  Google Scholar 

  • Wonham M, Byers J, Grosholz ED, Leung B (2013) Modeling the relationship between propagule pressure and invasion risk to inform policy and management. Ecol Appl 23:1691–1706

    Article  PubMed  Google Scholar 

  • Xu J, Wickramarathne TL, Grey EK, Steinhaeuser K, Keller R, et al. (2014) Patterns of ship-borne species spread: a clustering approach for risk assessment and management of non-indigenous species spread. arXiv preprint arXiv:1401.5407

  • Zalewski A, Michalska-Parda A, Bartoszewicz M, Kozakiewicz M, Brzezin´ski M (2010) Multiple introductions determine the genetic structure of an invasive species population: American mink Neovison vison in Poland. Biol Conserv 143:1355–1363

    Article  Google Scholar 

  • Zayed A, Constantin SA, L Packer (2007) Successful Biological invasion despite a severe genetic load. PLoS One 2:e868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Sarah Bailey, Jennifer K Adams and Robert Dallas Linley generously provided the shipping database. Graham Gillespie, Thomas Therriault, Claudio Dibacco, Benedikte Vercaemer and Nathalie Simard helped to establish our initial regional lists of exotic species. Matthias Herborg, Thomas Therriault, Arin Yeomans Routledge and Kimberley Thornton and Olivier d’Amours helped with port diving operations. Tanya Hansen, Maryse Plante-Couture, Raphael Estrada Anaya, Sophie Comtois, Jean-Charles Fleurent, Katie Kenny-Foeldessy, Claude Nozères and Francois Roy provided essential help with collecting specimens. We thank Gretchen Lambert and Sarah Stewart-Clark for confirming tunicate identifications from morphological traits and molecular techniques, respectively. Benedikte Vercaemer, Dawn Sephton and Joanne Keays helped with field set-up and Andréa Weise helped with figures. Eric Petersen provided statistical support. We thank Gregory M. Ruiz, James T. Carlton, James Corbett and Julie Lockwood for helpful comments. Funding for this study was provided by the NSERC Canadian Aquatic Invasive Species Network (CAISN) and Fisheries and Ocean Canada to C.W.. A.L.R. was further supported by scholarships from McGill University and the Fonds de recherche sur la nature et les technologies (FQRNT). F.G. acknowledges support from the Natural Science and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anaïs Lacoursière-Roussel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 676 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lacoursière-Roussel, A., Bock, D.G., Cristescu, M.E. et al. Effect of shipping traffic on biofouling invasion success at population and community levels. Biol Invasions 18, 3681–3695 (2016). https://doi.org/10.1007/s10530-016-1258-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-016-1258-3

Keywords

Navigation