Skip to main content

Advertisement

Log in

Tamarix (Tamaricaceae) hybrids: the dominant invasive genotype in southern Africa

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Hybridization is regarded as a rapid mechanism for increasing genetic variation that can potentially enhance invasiveness. Tamarix hybrids appear to be the dominant genotypes in their invasions. Exotic Tamarix are declared invasive in South Africa and the exotic T. chinensis and T. ramosissima are known to hybridize between themselves, and with the indigenous T. usneoides. However, until now, it was not known which species or hybrid is the most prevalent in the invasion. With a biocontrol programme being considered as a way of suppressing the alien Tamarix populations, it is important to document the population genetic dynamics of all species in the region. This investigation sought to identify Tamarix species in southern Africa and their hybrids, describe their population structure, and reveal the geographic origin of the invasive species. To achieve this, nuclear Internal Transcribed Spacer (ITS) sequence data and the multilocus Amplified Fragment Length Polymorphisms (AFLPs) markers were used. Phylogenetic analysis and population genetic structure confirmed the presence of three species in South Africa (T. chinensis, T. ramosissima and T. usneoides) with their hybrids. The indigenous T. usneoides is clearly genetically distant from the alien species T. chinensis and T. ramosissima. Interestingly, the Tamarix infestation in South Africa is dominated (64.7 %) by hybrids between T. chinensis and T. ramosissima. The exotic species match their counterparts from their places of origin in Eurasia, as well as those forming part of the invasion in the US.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbott RJ (1992) Plant invasions, interspecific hybridization and the evolution of new plant taxa. Trends Ecol Evol 7:401–405. doi:10.1016/0169-5347(92)90020-C

    Article  CAS  PubMed  Google Scholar 

  • Abbott RJ, Brennan AC, James JK, Forbes DG, Hegarty MJ, Hiscock SJ (2009) Recent hybrid origin and invasion of the British Isles by a self-incompatible species, Oxford ragwort (Senecio squalidus L., Asteraceae). Biol Invasions 11:1145–1158. doi:10.1007/s10530-008-9382-3

    Article  Google Scholar 

  • Ainouche ML, Fortune PM, Salmon A, Parisod C, Grandbastien MA, Fukunaga K, Ricou M, Misset MT (2009) Hybridization, polyploidy and invasion: lessons from Spartina (Poaceae). Biol Invasions 11:1159–1173. doi:10.1007/s10530-008-9383-2

    Article  Google Scholar 

  • Anderson EC (1949) Introgressive hybridization. Wiley, New York

    Book  Google Scholar 

  • Bailey C, Carr T, Harris S, Hughes C (2003) Characterization of angiosperm nrDNA polymorphism, paralogy, and pseudogenes. Mol Phylogenet Evol 29:435–455. doi:10.1016/j.ympev.2003.08.021

    Article  CAS  PubMed  Google Scholar 

  • Baum B (1978) The genus Tamarix. The Israel Academy of Science and Humanities, Jerusalem

    Google Scholar 

  • Blair AC, Hufbauer AR (2009) Geographic patterns of interspecific hybridization between spotted Knapweed (Centaurea stoebe) and diffuse Knapweed (C. diffusa). Invasive Plant Sci Manag 2:55–69. doi:10.1614/IPSM-08-105.1

    Article  Google Scholar 

  • Bonin A, Erich D, Manel S (2007) Statistical analysis of amplified fragment length polymorphism data: a toolbox for molecular ecologists and evolutionists. Mol Ecol 16:3737–3758. doi:10.1111/j.1365-294X.2007.03435.x

    Article  CAS  PubMed  Google Scholar 

  • Bredenkamp CL (2003) Tamaricaceae. In: Germishuizen G, Meyer NL (eds) Plants of southern Africa. National Botanical Institute, Pretoria, p 927

    Google Scholar 

  • Bredenkamp CL, Phepho N (2008) Hybridization of Tamarix usneoides and Tamarix ramosissima. South African Botanical Institute, Pretoria

    Google Scholar 

  • Cuda JP, Christ LR, Manrique V, Overholt WA, DA Wheeler Williams (2012) Role of molecular genetics in identifying ‘fine-tuned’ natural enemies of the invasive Brazilian peppertree, Schinus terebinthifolius: a review. Biol Control 57:227–233. doi:10.1007/s10526-011-9418-y

    Google Scholar 

  • Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9(8):772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeLoach CJ, Knutson AE, Moran PJ, Everitt JH, Michels GJ, Muegge MA, Randal CW, Fain TG, Donet MP, Ritzi CM (2009) Progress on biological control of saltcedar in the Western U.S.: Emphasis—Texas 2004–2009. AgriLife Research. http://www.orangentia.net/SaltcedarPublicReportHandout11-10-09.pdf. Accessed on 23 June 2015

  • Dice L (1945) Measures of the amount of ecologic association between species. Ecology 26:297–302. doi:10.2307/1932409

    Article  Google Scholar 

  • DiTomaso JM (1998) Impact, biology and ecology of saltcedar (Tamarix spp) in the south-western United States. Weed Technol 12:326–336

    Google Scholar 

  • Dudley TL, Bean DW, Pattison RR, Caires A (2012) Selectivity of decision making framework for restoring riparian zones degraded by invasive alien plants in South Africa a biological control agent, Diorhabda carinulata Desrochers, 1870 (Coleoptera: Chrysomelidae) for host species within the genus Tamarix Linneaus, 1753. Pan-Pac Entomol 88:319–341. doi:10.3956/2011-10.1

    Article  Google Scholar 

  • Ellstrand NC, Schierenbeck KA (2000) Hybridization as a stimulus for the evolution of invasiveness in plants? Proc Natl Acad Sci USA 97:7043–7050. doi:10.1073/pnas.97.13.7043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620. doi:10.1111/j.1365-294X.2005.02553.x

    Article  CAS  PubMed  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578. doi:10.1111/j.1471-8286.2007.01758.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791. doi:10.2307/2408678

    Article  Google Scholar 

  • Floate KD, Whitham TG (1993) The “hybrid bridge” hypothesis: host shifting via plant hybrid swarms. Am Nat 141:651–662. http://www.jstor.org/stable/2462756

  • Fritz RS, Nichols-Orians CM, Brunsfeld SJ (1994) Interspecific hybridization of plants and resistance to herbivores: hypotheses, genetics, and variable responses in a diverse herbivore community. Oecologia 97:106–117. doi:10.1007/BF00317914

  • Gaskin JF, Kazmer DJ (2009) Introgression between invasive saltcedars (Tamarix chinensis and Tamarix ramosissima) in the USA. Biol Invasions 11:1121–1130. doi:10.1007/s10530-008-9384-1

    Article  Google Scholar 

  • Gaskin JF, Schaal BA (2002) Hybrid Tamarix widespread in U.S. invasion and undetected in native Asian range. Proc Natl Acad Sci USA 99:11256–11259. doi:10.1073/pnas.132403299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaskin JF, Schaal BA (2003) Molecular phylogenetic investigation of U.S. invasive Tamarix. Syst Bot 28:86–95. doi:10.1043/0363-6445-28.1.86

    Google Scholar 

  • Gaskin JF, Birken AS, Cooper DJ (2011a) Levels of novel hybridization in the saltcedar invasion compared over seven decades. Biol Invasions 1:1–7. doi:10.1007/s10530-011-0110-z

    Google Scholar 

  • Gaskin JF, Bon M, Cock MJW, Cristofaro M, De Baisé A, De Clerck-Floate R, Ellison CA, Hinz HL, Hufbauer RA, Julien MH, Sforza R (2011b) Applying molecular based approaches to classical biological control of weeds. Biol Control 58:1–21. doi:10.1016/j.biocontrol.2011.03.015

    Article  CAS  Google Scholar 

  • Gaskin JF, Schwarzländer M, Grevstad FS, Haverhals MA, Bourchier RS, Miller TW (2014) Extreme differences in population structure and genetic diversity for three invasive congeners: knotweeds in western North America. Biol Invasions 16:2127–2136. doi:10.1007/s10530-014-0652-y

    Article  Google Scholar 

  • Goolsby JA, De Barro PJ, Makinson JR et al (2006) Matching the origin of an invasive weed for selection of a herbivore haplotype for biological control programme. Mol Ecol 15:287–297. doi:10.1111/j.1365-294X.2005.02788.x

    Article  CAS  PubMed  Google Scholar 

  • Hall TA (2013) bioedit: a user-friendly biological sequence alignment editor and analysis program for Windows, version 7.0.9.0. Nucl Acids Symp Ser 41:95–98

    Article  CAS  Google Scholar 

  • Hedge SG, Nason JD, Clegg JM, Ellstrand N (2006) The evolution of California’s wild radish has resulted in the extinction of its progenitors. Evolution 60(6):1187–1197. doi:10.1111/j.0014-3820.2006.tb01197.x

    Article  Google Scholar 

  • Henderson L (2001) Alien weeds and invasive plants: a complete guide to declared weeds and invaders in South Africa. Agric Res Comm, Cape Town

    Google Scholar 

  • Holmes PM, Richardson DM, Esler KJ, Witkowski ETF, Fourie S (2005) A decision making framework for restoring riparian zones degraded by invasive alien plants in South Africa. S Afr J Sci 101:553–564

    Google Scholar 

  • Hultine KR, Dudley TL, Leavitt SW (2013) Herbivory-induced mortality increases with radical growth in an invasive riparian phreatophyte. AnnBot 111:1197–1206. doi:10.1093/aob/mct077

    CAS  Google Scholar 

  • Knutson AE, Deloach CJ, Tracy JL, Randal CW (2012) Field evaluation of Diorhabda elongata and D. carinata (Coleoptera: Chrysomelidae) for biological control of saltcedars (Tamarix spp.) in northwest Texas. Southwest Entomol 37:91–102. doi:10.3958/059.037.0201

    Article  Google Scholar 

  • Mayonde SG, Cron GV, Gaskin JF, Byrne JM (2015) Evidence of Tamarix hybrids in South Africa, as inferred by nuclear ITS and plastid trnS-trnG DNA sequence data. S Afr J Bot 96:122–131. doi:10.1016/j.sajb.2014.10.011

    Article  CAS  Google Scholar 

  • McGuire JL, Johnson TJ (2006) Plant genotype and induced responses effect resistence to herbivores on evening primrose (Oenothera biennis). Ecol Entomol 31:20–31. doi:10.1111/j.0307-6946.2006.00750.x

    Article  Google Scholar 

  • Milbrath LR, Deloach CJ (2006) Host specificity of different populations of the leaf beetle Diorhabda elongata (Coleoptera: Chrysomelidae), a biological control agent of saltcedar (Tamarix spp.). Biol Control 36:32–48. doi:10.1016/j.biocontrol.2005.09.008

    Article  Google Scholar 

  • Milne RI, Abbott RJ (2000) Origin and evolution of invasive naturalized material of Rhododendron ponticum L. in the British Isles. Mol Ecol 9:541–556. doi:10.1046/j.1365-294x.2000.00906.x

    Article  CAS  PubMed  Google Scholar 

  • Moody M, Les D (2002) Evidence of hybridity in invasive watermilfoil (Myrophyllum) populations. Proc Natl Acad Sci, USA 99:14867–14871. doi:10.1073/pnas.172391499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Obermeyer AA (1976) Tamaricaceae. In: Ross JH (ed) Flora of southern Africa. Botanical Research Institute, Department of Agricultural Technical Services, Pretoria

    Google Scholar 

  • Papa R, Troggio M, Ajmone-Marsan P, Marzano Nonnis F (2005) An improved protocol for the production of AFLP markers in complex genomes by means of capillary electrophoresis. J Anim Breed Genet 122:62–68. doi:10.1111/j.1439-0388.2004.00476.x

    Article  CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rieseberg LH, Carter R, Zona S (1990) Molecular tests of the hypothesized hybrid origin of two diploid Helianthus species. Evolution 44:1498–1511. doi:10.2307/2409332

    Article  CAS  Google Scholar 

  • Rieseberg LH, Ellstrand NC, Arnold M (1993) What can molecular and morphological markers tell us about plant hybridization? Crit Rev Plant Sci 12:213–241. doi:10.1080/07352689309701902

    CAS  Google Scholar 

  • Rieseberg LH, Kim SC, Randell RA et al (2007) Hybridization and the colonization of novel habitats by annual sunflowers. Genetica 129:149–165. doi:10.1007/s10709-006-9011-y

    Article  PubMed  Google Scholar 

  • Rohlf FJ (1998) NTSYS-pc: Numerical taxonomy and multivariate analysis system. Ver 2.0, New York, Exeter Software

  • Rohlf FJ (2005) NTSYS-pc: Numerical taxonomy and multivariate analysis system. Ver 2.2, New York, Exeter Software

  • Roley SS, Newman RM (2006) Developmental performance of the milfoil weevil, Euhrychiopsis lecontei (Coleoptera: Curculionidae), on Northern watermilfoil, Eurasian watermilfoil, and hybrid (Northern × Eurasian) watermilfoil. Environ Entomol 35:121–126. doi:10.1603/0046-225X-35.1.121 121–126

    Article  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2001) MrBayes: Bayesian inference of phylogenetic trees. Bio Appl Note 17(8):754–755

    Article  Google Scholar 

  • Russell GE, Germishuizen G, Herman P, Olivier P, Perold SM, Reid C, Retief E, Smook L, van Rooy J, Welman WG (1984) List of species of southern African plants. Bot Res Inst, Pretoria

    Google Scholar 

  • Schierenbeck K, Ellstrand N (2009) Hybridization and the evolution of invasiveness in plants and other organisms. Biol Invasions 11:1093–1105. doi:10.1007/s10530-008-9388-x

    Article  Google Scholar 

  • Schmidt H, Niessen L, Vogal RL (2004) AFLP analysis of Fusarium species in the section Sporotrichiella—evidence for Fusarium langsethiae as a new species. Int J Food Microbiol 95:297–304. doi:10.1016/j.ijfoodmicro.2003.12.008

    Article  CAS  PubMed  Google Scholar 

  • Shafroth PB, Cleverley J, Dudley TL et al (2005) Saltcedar removal, water salvage and wildlife habitat restoration along rivers in the southwestern US. Environ Manag 35:231–246

    Article  Google Scholar 

  • Sun Y, Skinner DJ, Hulbert SH (1994) Phylogenetic analysis of sorghum and related taxa using internal transcribed spacers of nuclear ribosomal DNA. Theor Appl Genet 89:26–32. doi:10.1007/BF00226978

    Article  CAS  PubMed  Google Scholar 

  • Swofford DL (2002) PAUP* phylogenetic analysis using parsimony (* and other methods). Sinauer Associates, Sunderland

    Google Scholar 

  • Templeton A (1981) Mechanisms of speciation—a population genetic approach. Annu Rev Ecol Syst 12:23–48

    Article  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Van De Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414. doi:10.1093/nar/23.21.4407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitham TG (1989) Plant hybrid zones as sinks for pests. Science 244:1490–1493. doi:10.1126/science.244.4911.1490

    Article  Google Scholar 

  • Whitney KD, Randall RA, Rieseberg LH (2006) Adaptive introgression of herbivore resistance traits in the weedy sunflower Helianthus annuus. Am Nat 167:794–807. doi:10.1086/504606

    Article  PubMed  Google Scholar 

  • Wilken DH (1993) Tamaricaceae. In: Hickman JC (ed) The Jepson manual. University of California Press, Berkerley

    Google Scholar 

  • Williams DA, Overholt WA, Cuda JP, Hughes JP (2005) Chloroplast and microsatellite DNA diversities reveal the introduction history of Brazilian peppertree (Schinus terebinthifolius) in Florida. Mol Ecol 14:3643–3656. doi:10.1111/j.1365-294X.2005.02666.x

    Article  CAS  PubMed  Google Scholar 

  • Williams WI, Friedman JM, Gaskin JF, Norton AP (2014) Hybridization of an invasive shrub affects tolerance and resistance to defoliation by a biological control agent. Evol Appl 7(3):381–393. doi:10.1111/eva.12134

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang D, Zhang Y, Gaskin JF, Chen Z (2006) Systematic position of Myrtama Ovcz. and Kinz. based on morphological and nrDNA ITS sequence evidence. Chin Sci Bull 51:117–123. doi:10.1007/s11434-006-8215-y

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the Department of Trade and Industries (DTI) and National Research Foundation (NRF) “THRIP” awards to Isabel Weiersbye and Edward Witkowski (University of Witwatersrand, Johannesburg) for research with AngloGold Ashanti, South Africa (SA) Region Ltd and Ashanti Goldfields Kilo. Special thanks to Ms Kimberley Mann and the Molecular Ecology lab at the United States Department of Agriculture, Agriculture Research Service, Sidney, Montana, USA for her assistance in developing the AFLP markers. We are grateful to the C.E. Moss Herbarium staffs at the School of Animal Plant and Environmental Sciences, Wits University, Johannesburg for providing the facilities and the assistance needed, and to Ruvimbo Mapaya for assistance with the Bayesian analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samalesu G. Mayonde.

Appendix 1

Appendix 1

See Table 3.

Table 3 Voucher and locality information for the Tamarix specimens included in this study

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mayonde, S.G., Cron, G.V., Gaskin, J.F. et al. Tamarix (Tamaricaceae) hybrids: the dominant invasive genotype in southern Africa. Biol Invasions 18, 3575–3594 (2016). https://doi.org/10.1007/s10530-016-1249-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-016-1249-4

Keywords

Navigation