Skip to main content

Advertisement

Log in

Invasive North American bullfrogs transmit lethal fungus Batrachochytrium dendrobatidis infections to native amphibian host species

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Invasive species can be a threat to native species in several ways, including transmitting lethal infections caused by the parasites they carry. However, invasive species may also be plagued by novel and lethal infections they acquire when invading, making inferences regarding the ability of an invasive host to vector disease difficult from field observations of infection and disease. This is the case for the pathogenic fungus Batrachochytrium dendrobatidis (Bd) in Europe and one invasive host species, the North American bullfrog Lithobates catesbeianus, hypothesized to be responsible for vectoring lethal infection to European native amphibians. We tested this hypothesis experimentally using the alpine newt Ichthyosaura alpestris as our model native host. Our results show that infected bullfrog tadpoles are effective vectors of Bd. Native adult newts co-housed with experimentally infected bullfrog tadpoles became Bd infected (molecular and histological tests). Moreover, the exposed adult newts suffered mortality while the majority of infected bullfrog tadpoles survived until metamorphosis. These results cannot resolve the historical role of alien species in establishing the distribution of Bd across Europe or other regions in the world where this species was introduced, but they show its potential role as a Bd reservoir capable of transmitting lethal infections to native amphibians. Finally, our results also suggest that the removal of infected bullfrogs from aquatic environments may serve to reduce the availability of Bd in European amphibian communities, offering another justification for bullfrog eradication programmes that are currently underway or may be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Bai C, Garner TWJ, Yiming L (2010) First evidence of Batrachochytrium dendrobatidis in China: discovery of chytridiomycosis in introduced American bullfrogs and native amphibians in the Yunnan Province, China. EcoHealth 7:127–134

    Article  PubMed  Google Scholar 

  • Baláž V, Vörös J, Civiš P, Voja J, Hettyey A, Sós E, Dankovics R, Jehle R, Christiansen DG, Clare F, Fisher MC, Garner TWJ, Bielby J (2014) Assessing risk and guidance on monitoring of Batrachochytrium dendrobatidis in Europe through identification of taxonomic selectivity of infection. Conserv Biol 28:213–223

    Article  PubMed  Google Scholar 

  • Bataille A, Fong JJ, Cha M, Wogan GOU, Baek HJ, Lee H, Min M-S, Waldman B (2013) Genetic evidence for a high diversity and wide distribution of endemic strains of the pathogenic chytrid fungus Batrachochytrium dendrobatidis in wild Asian amphibians. Mol Ecol 22:4196–4209

    Article  CAS  PubMed  Google Scholar 

  • Bielby J, Bovero S, Sotgiu G, Tessa G, Favelli M, Angelini C, Doglio S, Clare F, Gazzaniga E, Lapietra F, Garner TWJ (2009) Fatal chytridiomycosis in the Tyrrhenian painted frog. EcoHealth 6:27–32

    Article  PubMed  Google Scholar 

  • Bielby J, Bovero S, Sotgiu G, Tessa G, Favelli M, Angelini C, Perkins M, Garner TWJ (2013) Geographic, taxonomic and ecological variation in Batrachochytrium dendrobatidis infection within a highly endemic amphibian community. Divers Distrib 19:1153–1163

    Article  Google Scholar 

  • Bielby J, Fisher MC, Clare FC, Rosa GM, Garner TWJ (2015) Host species vary in infection probability, sub-lethal effects, and costs of immune response when exposed to an amphibian parasite. Sci Rep 5:20828

    Article  Google Scholar 

  • Bosch J, Martínez-Solano I, Garcia-Paris M (2001) Evidence of a chytrid fungus infection involved in the decline of the common midwife toad (Alytes obstetricans) in protected areas of central Spain. Biol Conserv 97:331–337

    Article  Google Scholar 

  • Bosch J, Garcia D, Fernandez-Beaskoetxea S, Fisher MC, Garner TWJ (2013) Evidence for the introduction of lethal chytridiomycosis affecting wild Betic midwife toads (Alytes dickhilleni). EcoHealth 10:82–89

    Article  PubMed  Google Scholar 

  • Boyle DG, Boyle DB, Olson V, Morgan JAT, Hyatt AD (2004) Rapid quantitative detection of chytridiomycosis (Batrachochytrium dendrobatidis) in amphibian samples using real-time Taqman PCR assay. Dis Aquat Organ 60:141–148

    Article  CAS  PubMed  Google Scholar 

  • Briggs CJ, Knapp RA, Vredenburg VT (2010) Enzootic and epizootic dynamics of the chytrid fungal pathogen of amphibians. Proc Natl Acad Sci USA 107:9695–9700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bürgi LP, Mills NJ (2014) Lack of enemy release for an invasive leafroller in California: temporal patterns and influence of host plant origin. Biol Inv 16:1021–1034

    Article  Google Scholar 

  • Cashins SD, Grogan LF, McFadden M, Hunter D, Harlow PS, Berger L et al (2013) Prior infection does not improve survival against the amphibian disease chytridiomycosis. PLoS ONE 8(2):e56747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colautti R, Ricciardi A, Grigorovich IA, MacIsaac HJ (2004) Is invasion success explained by the enemy release hypothesis? Ecol Lett 7(8):721–733

    Article  Google Scholar 

  • Crowl TT, Crist TO, Parmenter RR, Belovsky G, Lugo AE (2008) The spread of invasive species and infectious disease as drivers of ecosystem change. Front Ecol Environ 6(5):238–246

    Article  Google Scholar 

  • Daszak P, Cunningham AA, Hyatt AD (2000) Emerging infectious diseases of wildlife-threats to biodiversity and human health. Science 287:443–449

    Article  CAS  PubMed  Google Scholar 

  • Doddington BJ, Bosch J, Oliver JA, Grassly NC, Garcia G, Garner TWJ, Fisher MC (2013) Context-dependent amphibian host population response to an invading pathogen. Ecology 94:1795–1804

    Article  PubMed  Google Scholar 

  • Farrer RA, Weinert LA, Bielby J, Garner TWJ, Balloux F, Clare F, Bosch J, Cunningham AA, Weldon C, du Preez LH, Anderson L, Kosakovsky Pond SL, Shahar-Golan R, Henk DA, Fisher MC (2011) Multiple emergences of amphibian chytridiomycosis include a globalised hypervirulent recombinant lineage. Proc Natl Acad Sci USA 108:18732–18736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farrer RA, Henk DA, Garner TWJ, Balloux F, Woodhams DC, Fisher MC (2013) Chromosomal copy number variation, selection and uneven rates of recombination reveal cryptic genome diversity linked to pathogenicity. PLoS Genet 9(8):e1003703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ficetola GF, Coïc C, Detaint M, Berroneau M, Lorvelec O, Miaud C (2007) Pattern of distribution of the American bullfrog Rana catesbiana in Europe. Biol Inv 9:767–772

    Article  Google Scholar 

  • Ficetola GF, Bonin A, Miaud C (2008) Population genetics reveals origin and number of founders in a biological invasion. Mol Ecol 17:773–782

    Article  CAS  PubMed  Google Scholar 

  • Fisher MC, Garner TWJ (2007) The relationship between the emergence of Batrachochytrium dendrobatidis, the international trade in amphibians and introduced amphibian species. Fungal Biol Rev 21:2–9

    Article  Google Scholar 

  • Garner TWJ, Walker S, Bosch J, Hyatt AD, Cunningham AA, Fisher MJ (2005) Chytrid fungus in Europe. Emerg Infect Dis 11:1639–1641

    Article  PubMed  PubMed Central  Google Scholar 

  • Garner TWJ, Perkins M, Govindarajulu P, Seglie D, Walker SJ, Cunningham AA, Fisher MC (2006) The emerging amphibian pathogen Batrachochytrium dendrobatidis globally infects introduced populations of the North American bullfrog, Rana catesbeiana. Biol Lett 2:455–459

    Article  PubMed  PubMed Central  Google Scholar 

  • Garner TWJ, Walker S, Bosch J, Leech S, Rowcliffe JM, Cunningham AA, Fisher MC (2009) Life history trade-offs influence mortality associated with the amphibian pathogen Batrachochytrium dendrobatidis. Oikos 118:783–791

    Article  Google Scholar 

  • Garner TWJ, Martel A, Bielby J, Bosch J, Anderson L, Meredith A, Cunningham AA, Fisher MC, Henk DA, Pasmans F (2013) Infectious diseases that may threaten Europe’s amphibians. In: Heatwole H, Wilkinson JW (eds) Amphibian Biology, Volume 11, Issue 3: Diseases, Declines and Conservation of Amphibians in Seven Western European Countries. Pelagic Publishing Ltd, pp 1–41

  • Gervasi SS, Urbina J, Hua J, Chestnut T, Relyea RA, Blaustein AR (2013) Experimental evidence for American bullfrog (Lithobates catesbeianus) susceptibility to chytrid fungus (Batrachochytrium dendrobatidis). EcoHealth 10:166–171

    Article  PubMed  Google Scholar 

  • Gosner KL (1960) A simplified table for staging anuran embryos and larvae with notes on identification. Herpetol 16:183–190

    Google Scholar 

  • Greenspan SE, Calhoun AJ, Longcore JE, Levy MG (2012) Transmission of Batrachochytrium dendrobatidis to wood frogs (Lithobates sylvaticus) via a bullfrog (L. catesbeianus) vector. J Wild Diseases 48:575–582

    Article  Google Scholar 

  • Hanselmann R, Rodríguez A, Lampo M, Fajardo-Ramos L, Aguirre AA, Kilpatrick AM, Rodríguez JP, Daszak P (2004) Presence of an emerging pathogen of amphibians in introduced bullfrogs Rana catesbeiana in Venezuela. Biol Conserv 120:115–119

    Article  Google Scholar 

  • Heger T, Jeschke JM (2014) The enemy release hypothesis as a hierarchy of hypotheses. Oikos 123:741–750

    Article  Google Scholar 

  • Kupferberg SJ (1997) Bullfrog (Rana catesbeiana) invasion of a California river: the role of larval competition. Ecology 78:1736–1751

    Article  Google Scholar 

  • Lawler SP, Dritz D, Strange T, Holyoak M (1999) Effects of introduced mosquitofish and bullfrogs on the threatened California red-legged frog. Conserv Biol 13:613–622

    Article  Google Scholar 

  • Luquet E, Garner TWJ, Léna J-P, Bruel C, Joly P, Lengagne T, Grolet O, Plénet S (2012) Genetic erosion in wild populations makes resistance to a pathogen more costly. Evolution 66:1942–1952

    Article  PubMed  Google Scholar 

  • Martel A, Blooi M, Adriaensen C, Van Rooij P, Beukema W, Fisher MC, Farrer RA, Schmidt BR, Tobler U, Goka K, Lips KR, Muletz C, Zamudio K, Bosch J, Lötters S, Wombwell E, Garner TWJ, Spitzen-van der Sluijs A, Salvidio S, Ducatelle R, Nishikawa K, Nguyen TT, Van Bocxlaer I, Bossuyt F, Pasmans F (2014) Recent introduction of a chytrid fungus endangers Western Palearctic salamanders. Science 346:630–631

    Article  CAS  PubMed  Google Scholar 

  • McMahon TA, Sears BF, Venesky MD, Bessler SM, Brown JM, Deutsch K, Halstead NT, Lentz G, Tenouri N, Young S, Civitello DJ, Ortega N, Fites JS, Reinert LK, Rollins-Smith LA, Raffel TR, Rohr JR (2014) Amphibians acquire resistance to live and dead fungus overcoming fungal immunosuppression. Nature 511:224–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michelin G, Epain-Henry C, Beguin D (2014) Grenouille taureau Lithobates catesbeianus (Shaw, 1802) Bilan des prospections et phase opérationnelle 2014. Comité Départemental de la Protection de la Nature et de l’Environnement, Syndicat d’Entretien du Bassin du Beuvron (eds), 54 p

  • Murray KA, Skerratt LF, Speare R, Callum HMC (2009) Impact and dynamics of disease in species threatened by the amphibian chytrid fungus, Batrachochytrium dendrobatidis. Conserv Biol 23:1242–1252

    Article  PubMed  Google Scholar 

  • Olson DH, Aanensen DM, Ronnenberg KL, Powell CI, Walker SF, Bielby J, Garner TWJ, Weaver G, the Bd Mapping Group, Fisher MC (2013) Mapping the global emergence of Batrachochytrium dendrobatidis, the amphibian chytrid fungus. PLoS ONE 8(2):e56802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ouellet M, Mikaelian I, Pauli BD, Rodrigue J, Green DM (2005) Historical evidence of widespread chytrid infection in North American amphibian populations. Conserv Biol 19:1431–1440

    Article  Google Scholar 

  • Peterson AC, McKenzie VJ (2014) Investigating differences across host species and scales to explain the distribution of the amphibian pathogen Batrachochytrium dendrobatidis. PLoS ONE 9(9):e107441

    Article  PubMed  PubMed Central  Google Scholar 

  • Prenter J, MacNeil C, Dick JTA, Dunn AM (2004) Roles of parasites in animal invasions. Trends Ecol Evol 19(7):385–390

    Article  PubMed  Google Scholar 

  • R Development Core team (2010) R: a language and environment for statistical computing. Austria, Vienna

    Google Scholar 

  • Rachowicz LJ, Vredenburg VT (2004) Transmission of Batrachochytrium dendrobatidis within and between amphibian life stages. Dis Aquat Org 61:75–83

    Article  PubMed  Google Scholar 

  • Ramsey JP, Reinert LK, Harper LK, Woodhams DC, Rollins-Smith LA (2010) Immune defenses against Batrachochytrium dendrobatidis, a fungus linked to global amphibian declines, in the South African Clawed Frog, Xenopus laevis. Infect Immun 78:3981–3992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson JML, Govindarajulu P, Anholt BR (2014) Distribution of the disease pathogen Batrachochytrium dendrobatidis in non-epidemic amphibian communities in western Canada. Ecography 37:883–893

    Article  Google Scholar 

  • Rollins-Smith LA (2009) The role of amphibian antimicrobial peptides in protection of amphibians from pathogens linked to global amphibian declines. Biochim Biophys Acta 1788:1593–1599

    Article  CAS  PubMed  Google Scholar 

  • Rosenblum EB, James TY, Zamudio KR, Poorten TJ, Ilut D, Rodriguez D, Eastman JM, Richards-Hrdlicka K, Joneson S, Jenkinson TS, Longcore JE, Parra Olea G, Toledo LF, Arellano ML, Medina EM, Restrepo S, Flechas SV, Berger L, Briggs CJ, Stajich JE (2013) Complex history of the amphibian-killing chytrid fungus revealed with genome resequencing data. Proc Natl Acad Sci USA 110: 9385–9390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schloegel LM, Picco AM, Kilpatrick AM, Davies AJ, Hyatt AD, Daszak P (2009) Magnitude of the US trade in amphibians and the presence of Batrachochytrium dendrobatidis and ranavirus infection in imported North American bullfrogs (Rana catesbeiana). Biol Conserv 142:1420–1426

    Article  Google Scholar 

  • Schloegel LM, Ferreira CM, James TY, Hipolito M, Longcore JE, Hyatt AD, Yabsley M, Martins AMCRPF, Mazzoni R, Davies AJ, Daszak P (2010) The North American bullfrog as a reservoir for the spread of Batrachochytrium dendrobatidis in Brazil. Anim Conserv 13:53–61

    Article  Google Scholar 

  • Searle CL, Biga L, Spatafora JW, Blaustein AR (2011) A dilution effect in the emerging amphibian pathogen Batrachochytrium dendrobatidis. Proc Natl Acad Sci USA 108:16322–16326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spitzen van der Sluijs A, Martel A, Hallmann CA, Bosman W, Garner TWJ, van Rooij P, Jooris R, Haesebrouck F, Pasmans F (2014) Environmental determinants promote recent endemism of Batrachochytrium dendrobatidis infections in amphibian assemblages in Northwestern Europe in the absence of disease outbreak. Conserv Biol 28:1302–1311

    Article  PubMed  Google Scholar 

  • Sztatecsny M, Glaser F (2011) From the eastern lowlands to the western mountains: first records of the chytrid fungus Batrachochytrium dendrobatidis in wild amphibian populations from Austria. Herpetol J 21:87–90

    Google Scholar 

  • Torchin ME, Lafferty KD, Dobson AP, McKenzie VJ, Kuris AM (2003) Introduced species and their missing parasites. Nature 421:628–630

    Article  CAS  PubMed  Google Scholar 

  • Walker SF, Bosch J, James TY, Litvintseva AP, Valls JAO, Piña S, Garcia G, Rosa GA, Cunningham AA, Hole S, Griffiths R, Fisher MC (2008) Invasive pathogens threaten species recovery programs. Curr Biol 18:R853–R854

    Article  CAS  PubMed  Google Scholar 

  • Walker SF, Bosch J, Gomez V, Garner TWJ, Cunningham AA, Schmeller DS, Ninyerola M, Henk D, Ginestet C, Christian-Philippe A, Fisher MC (2010) Factors driving pathogenicity versus prevalence of the amphibian pathogen Batrachochytrium dendrobatidis and chytridiomycosis in Iberia. Ecol Lett 13:372–382

    Article  PubMed  Google Scholar 

  • Wolfe LM, Elzinga JA, Biere A (2004) Increased susceptibility to enemies following introduction in the invasive plant Silene latifolia. Ecol Lett 7:813–820

    Article  Google Scholar 

  • Woodhams DC, Ardipradja K, Alford RA, Marantelli G, Reinert LK, Rollins-Smith LA (2007) Resistance to chytridiomycosis varies among amphibian species and is correlated with skin peptide defenses. Anim Conserv 10:409–417

    Article  Google Scholar 

  • Zampiglia M, Canestrelli D, Chiocchio A, Nascetti G (2013) Geographic distribution of the chytrid pathogen Batrachochytrium dendrobatidis among mountain amphibians along the Italian peninsula. Dis Aquat Organ 107:61–68

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

All experimental work done here was ethically reviewed at Université de Savoie-Mont-Blanc. Authorization to catch Alpine newts was provided by the regional authorities (DREAL Rhône-Alpes, permit No. 2009–2010). CM, TD, AM, NCGG and AV were supported by ANR through the EU BiodivERsA-funded project R.A.C.E. (Risk Assessment of Chytridiomycosis to European amphibian biodiversity, M. Fisher coordinator), TWJG was supported by a NERC (Grant NE/G002193/1) through the EU BiodivERsA-funded project R.A.C.E., but is currently supported for research on chytridiomycosis by NERC standard grant NE/K012509/1. KS was hosted in France thanks to the Office Franco-Québéquois pour la Jeunesse, programme Formation & Emploi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude Miaud.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest: none of the authors of this paper has a financial or personal relationship with other people or organizations that could inappropriately influence or bias the content of the paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miaud, C., Dejean, T., Savard, K. et al. Invasive North American bullfrogs transmit lethal fungus Batrachochytrium dendrobatidis infections to native amphibian host species. Biol Invasions 18, 2299–2308 (2016). https://doi.org/10.1007/s10530-016-1161-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-016-1161-y

Keywords

Navigation