Skip to main content

Advertisement

Log in

Deep rooting and global change facilitate spread of invasive grass

  • PHRAGMITES INVASION
  • Published:
Biological Invasions Aims and scope Submit manuscript

An Erratum to this article was published on 08 August 2016

Abstract

Abiotic global change factors, such as rising atmospheric CO2, and biotic factors, such as exotic plant invasion, interact to alter the function of terrestrial ecosystems. An invasive lineage of the common reed, Phragmites australis, was introduced to North America over a century ago, but the belowground mechanisms underlying Phragmites invasion and persistence in natural systems remain poorly studied. For instance, Phragmites has a nitrogen (N) demand higher than native plant communities in many of the ecosystems it invades, but the source of the additional N is not clear. We exposed introduced Phragmites and native plant assemblages, containing Spartina patens and Schoenoplectus americanus, to factorial treatments of CO2 (ambient or +300 ppm), N (0 or 25 g m−2 year−1), and hydroperiod (4 levels), and focused our analysis on changes in root productivity as a function of depth and evaluated the effects of introduced Phragmites on soil organic matter mineralization. We report that non-native invasive Phragmites exhibited a deeper rooting profile than native marsh species under all experimental treatments, and also enhanced soil organic matter decomposition. Moreover, exposure to elevated atmospheric CO2 induced a sharp increase in deep root production in the invasive plant. We propose that niche separation accomplished through deeper rooting profiles circumvents nutrient competition where native species have relatively shallow root depth distributions; deep roots provide access to nutrient-rich porewater; and deep roots further increase nutrient availability by enhancing soil organic matter decomposition. We expect that rising CO2 will magnify these effects in deep-rooting invasive plants that compete using a tree-like strategy against native herbaceous plants, promoting establishment and invasion through niche separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amsberry L, Baker MA, Ewanchuk PJ, Bertness MD (2000) Clonal integration and the expansion of Phragmites australis. Ecol Appl 10:1110–1118

    Google Scholar 

  • Arnone JA, Zaller JG, Spehn EM, Niklaus PA, Wells CE, Korner C (2000) Dynamics of root systems in native grasslands: effects of elevated atmospheric CO2. New Phytol 147:73–86

    CAS  Google Scholar 

  • Bertness MD, Callaway R (1994) Positive Interactions in Communities. Trends Ecol Evol 9:191–193

    PubMed  CAS  Google Scholar 

  • Bertness MD, Ellison AM (1987) Determinants of pattern in a New-England salt-marsh plant community. Ecol Monogr 57:129–147

    Google Scholar 

  • Bertness MD, Ewanchuk PJ, Silliman BR (2002) Anthropogenic modification of New England salt marsh landscapes. Proc Natl Acad Sci USA 99:1395–1398

    PubMed  PubMed Central  CAS  Google Scholar 

  • Bowling DR, Pataki DE, Randerson JT (2008) Carbon isotopes in terrestrial ecosystem pools and CO2 fluxes. New Phytol 178:24–40

    PubMed  CAS  Google Scholar 

  • Burke DJ, Hamerlynck EP, Hahn D (2002) Interactions among plant species and microorganisms in salt marsh sediments. Appl Environ Microbiol 68:1157–1164

    PubMed  PubMed Central  CAS  Google Scholar 

  • Caplan JS, Wheaton C, Mozdzer TJ (2014) Belowground advantages in construction cost facilitate a cryptic plant invasion. AoB Plants 6:plu020. doi:10.1093/aobpla/plu020

  • Caplan JS, Hager RN, Megonigal JP, Mozdzer TJ (2015) Global change accelerates carbon assimilation by a wetland ecosystem engineer. Environ Res Lett 10:115006

    Google Scholar 

  • Carney KM, Hungate BA, Drake BG, Megonigal JP (2007) Altered soil microbial community at elevated CO2 leads to loss of soil carbon. Proc Natl Acad Sci USA 104:4990–4995

    PubMed  PubMed Central  CAS  Google Scholar 

  • Chambers RM, Mozdzer TJ, Ambrose JC (1998) Effects of salinity and sulfide on the distribution of Phragmites australis and Spartina alterniflora in a tidal saltmarsh. Aquat Bot 62:161–169

    CAS  Google Scholar 

  • Chambers RM, Osgood DT, Bart DJ, Montalto F (2003) Phragmites australis invasion and expansion in tidal wetlands: interactions among salinity, sulfide, and hydrology. Estuaries 26:398–406

    CAS  Google Scholar 

  • Cheng WX (2009) Rhizosphere priming effect: its functional relationships with microbial turnover, evapotranspiration, and C–N budgets. Soil Biol Biochem 41:1795–1801

    CAS  Google Scholar 

  • Daehler CC, Strong DR (1996) Status, prediction and prevention of introduced cordgrass Spartina spp. invasions in Pacific estuaries, USA. Biol Conserv 78:51–58

    Google Scholar 

  • Deegan LA, Johnson DS, Warren RS, Peterson BJ, Fleeger JW, Fagherazzi S, Wollheim WM (2012) Coastal eutrophication as a driver of salt marsh loss. Nature 490:388

    PubMed  CAS  Google Scholar 

  • Dukes JS, Mooney HA (1999) Does global change increase the success of biological invaders? Trends Ecol Evol 14:135–139

    CAS  PubMed  Google Scholar 

  • Ehrenfeld JG (2003) Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 6:503–523

    CAS  Google Scholar 

  • Ewanchuk PJ, Bertness MD (2004) Structure and organization of a northern New England salt marsh plant community. J Ecol 92:72–85

    Google Scholar 

  • Fu SL, Cheng WX (2002) Rhizosphere priming effects on the decomposition of soil organic matter in C-4 and C-3 grassland soils. Plant Soil 238:289–294

    CAS  Google Scholar 

  • Gale MR, Grigal DF (1987) Vertical root distributions of Northern tree species in relation to successional status. Can J For Res 17:829–834

    Google Scholar 

  • Holdredge C, Bertness MD (2011) Litter legacy increases the competitive advantage of invasive Phragmites australis in New England wetlands. Biol Invasions 13:423–433

    Google Scholar 

  • Hooper DU, Adair EC, Cardinale BJ, Byrnes JEK, Hungate BA, Matulich KL, Gonzalez A, Duffy JE, Gamfeldt L, O’Connor MI (2012) A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486:U105–U129

    Google Scholar 

  • Iversen CM (2010) Digging deeper: fine-root responses to rising atmospheric CO2 concentration in forested ecosystems. New Phytol 186:346–357

    PubMed  Google Scholar 

  • Jackson RB, Canadell J, Ehleringer JR, Mooney HA, Sala OE, Schulze ED (1996) A global analysis of root distributions for terrestrial biomes. Oecologia 108:389–411

    PubMed  CAS  Google Scholar 

  • Keller JK, Wolf AA, Weisenhorn PB, Drake BG, Megonigal JP (2009) Elevated CO2 affects porewater chemistry in a brackish marsh. Biogeochemistry 96:101–117

    CAS  Google Scholar 

  • Kettenring KM, Whigham DF (2009) Seed viability and seed dormancy of non-native Phragmites australis in suburbanized and forested watersheds of the Chesapeake Bay, USA. Aquat Bot 91:199–204

    Google Scholar 

  • Kirwan ML, Megonigal JP (2013) Tidal wetland stability in the face of human impacts and sea-level rise. Nature 504(7478):53–60

  • Koop-Jakobsen K, Wenzhöfer F (2015) The dynamics of plant-mediated sediment oxygenation in Spartina anglica rhizospheres-a planar optode study. Estuaries Coasts 38:951–963

    CAS  Google Scholar 

  • Langley JA, Megonigal JP (2010) Ecosystem response to elevated CO2 levels limited by nitrogen-induced plant species shift. Nature 466:96–99

    PubMed  CAS  Google Scholar 

  • Langley JA, Mckee KL, Cahoon DR, Cherry JA, Megonigal JP (2009) Elevated CO2 stimulates marsh elevation gain, counterbalancing sea-level rise. Proc Natl Acad Sci USA 106:6182–6186

    PubMed  PubMed Central  CAS  Google Scholar 

  • Langley JA, Mozdzer TJ, Shepard KA, Hagerty SB, Megonigal JP (2013) Tidal marsh plant responses to elevated CO2, nitrogen fertilization, and sea level rise. Global Change Biol 19(5):1495–1503

  • Luo Y, Su B, Currie WS, Dukes JS, Finzi AC, Hartwig U, Hungate B, McMurtrie RE, Oren R, Parton WJ, Pataki DE, Shaw MR, Zak DR, Field CB (2004) Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience 54:731–739

    Google Scholar 

  • McCormick MK, Kettenring KM, Baron HM, Whigham DF (2010) Spread of invasive Phragmites australis in estuaries with differing degrees of development: genetic patterns, Allee effects and interpretation. J Ecol 98:1369–1378

    Google Scholar 

  • McKinley DC, Romero JC, Hungate BA, Drake BG, Megonigal JP (2009) Does deep soil N availability sustain long-term ecosystem responses to elevated CO2? Global Change Biol 15:2035–2048

    Google Scholar 

  • Megonigal JP, Neubauer SC (2009) Biogeochemistry of tidal freshwater wetlands. In: Gerardo EW, Perillo ME, Cahoon DR, Brinson MM (eds) Coastal wetlands: an integrated ecosystem approach, Elsevier, The Netherlands, pp 535–562

  • Meschter J (2015) Effects of phragmites australis (Common Reed) invasion on nitrogen cycling: porewater chemistry and vegetation structure in a Brackish Tidal Marsh of the Rhode River, Maryland. M.S. Thesis. University of Maryland, College Park, MD. doi:10.13016/M20W78

  • Meyerson LA, Vogt KA, Chambers RM (2000) Linking the success of Phragmites to the alteration of ecosystem nutrient cycles. In: Weinstein MP, Kreeger DA (eds) Concepts and controversies in tidal marsh ecology. Kluwer Academic Publishers, Dordrecht, pp 827–844

    Google Scholar 

  • Moore GE, Burdick DM, Peter CR, Keirstead DR (2012) Belowground biomass of Phragmites australis in coastal marshes. Northeast Nat 19:611–626

    Google Scholar 

  • Mozdzer TJ, Megonigal JP (2012) Jack-and-master trait responses to elevated CO2 and N: a comparison of native and introduced Phragmites australis. Plos One 7(10):1–10. doi:10.1371/journal.pone.0042794

  • Mozdzer TJ, Zieman JC (2010) Ecophysiological differences between genetic lineages facilitate the invasion of non-native Phragmites australis in North American Atlantic coast wetlands. J Ecol 98:451–458

    Google Scholar 

  • Mozdzer TJ, Patrick MJ (2013) Increased methane emissions by an introduced phragmites australis lineage under global change. Wetlands 33(4):609–615. doi:10.1007/s13157-013-0417-x

  • Mueller P, Hager RN, Meschter JE, Mozdzer TJ, Langley JA, Jensen K, Megonigal JP (2016) Complex invader-ecosystem interactions and seasonality mediate the impact of non-native phragmites on CH4 emissions. Biol Invasions. doi:10.1007/s10530-016-1093-6

    Article  Google Scholar 

  • Nehring S, Hesse KJ (2008) Invasive alien plants in marine protected areas: the Spartina anglica affair in the European Wadden Sea. Biol Invasions 10:937–950

    Google Scholar 

  • Norby RJ, Warren JM, Iversen CM, Medlyn BE, McMurtrie RE (2010) CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proc Natl Acad Sci USA 107:19368–19373

    PubMed  PubMed Central  CAS  Google Scholar 

  • Pimentel D, Zuniga R, Morrison D (2005) Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol Econ 52:273–288

    Google Scholar 

  • Qin P, Zong CX (1992) Applied studies on Spartina. Ocean Press, Beijing

    Google Scholar 

  • Rooth JE, Stevenson JC, Cornwall JC (2003) Increased sediment accretion rates following invasion by Phragmites australis: the role of litter. Estuaries 26:475–483

    Google Scholar 

  • Ruhl H, Rybicki N (2010) Long-term reductions in anthropogenic nutrients link to improvements in Chesapeake Bay habitat. Proc Natl Acad Sci USA 107(38):16566–16570

  • Rundel PW, Dickie IA, Richardson DM (2014) Tree invasions into treeless areas: mechanisms and ecosystem processes. Biol Invasions. doi:10.1007/s10530-013-0614-9

    Article  Google Scholar 

  • Saltonstall K (2002) Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into North America. Proc Natl Acad Sci USA 99:2445–2449

    PubMed  PubMed Central  CAS  Google Scholar 

  • Saunders CJ, Megonigal JP, Reynolds JF (2006) Comparison of belowground biomass in C3- and C4- dominated mixed communities in a Chesapeake Bay brackish marsh. Plant Soil 280(1–2):305–322

  • Sorte CJB, Ibáñez I, Blumenthal DM, Molinari NA, Miller LP, Grosholz ED, Diez JM, D’Antonio CM, Olden JD, Jones SJ, Dukes JS (2013) Poised to prosper? A cross-system comparison of climate change effects on native and non-native species performance. Ecol Lett 16:261–270

    PubMed  Google Scholar 

  • Theoharides KA, Dukes JS (2007) Plant invasion across space and time: factors affecting nonindigenous species success during four stages of invasion. New Phytol 176:256–273

    PubMed  Google Scholar 

  • van Groenigen KJ, Osenberg CW, Hungate BA (2011) Increased soil emissions of potent greenhouse gases under increased atmospheric CO(2). Nature 475:214

    PubMed  Google Scholar 

  • Vitousek PM, D’antonio CM, Loope LL, Rejmanek M, Westbrooks R (1997) Introduced species: a significant component of human-caused global change. NZ J Ecol 21:1–16

    Google Scholar 

  • Wang Q, Wang CH, Zhao B, Ma ZJ, Luo YQ, Chen JK, Li B (2006) Effects of growing conditions on the growth of and interactions between salt marsh plants: implications for invasibility of habitats. Biol Invasions 8:1547–1560

    Google Scholar 

  • Windham L, Ehrenfeld JG (2003) Net impact of a plant invasion on nitrogen-cycling processes within a brackish tidal marsh. Ecol Appl 13:883–896

    Google Scholar 

  • Windham L, Lathrop RG (1999) Effects of Phragmites australis (common reed) invasion on aboveground biomass and soil properties in brackish tidal marsh of the Mullica River, New Jersey. Estuaries 22:927–935

    Google Scholar 

  • Windham L, Meyerson LA (2003) Effects of common reed (Phragmites australis) expansions on nitrogen dynamics of tidal marshes of the northeastern US. Estuaries 26:452–464

    Google Scholar 

  • Wolf AA, Drake BG, Erickson JE, Megonigal JP (2007) An oxygen-mediated positive feedback between elevated carbon dioxide and soil organic matter decomposition in a simulated anaerobic wetland. Glob Change Biol 13:2036–2044

    Google Scholar 

  • Zhu BA, Cheng WX (2011) C-13 isotope fractionation during rhizosphere respiration of C-3 and C-4 plants. Plant Soil 342:277–287

    CAS  Google Scholar 

Download references

Acknowledgments

We thank, J. Duls, A. Peresta, G. Peresta, M.I. Seal, K. Shepard, A. Teasley, S. Hagerty, M. O’Donoghue, K. Pannier, and B. Kelly for field and laboratory assistance. We also thank J.S. Caplan for feedback on the manuscript. The field study was supported by the USGS Global Change Research Program (cooperative agreement 06ERAG0011), the US Department of Energy (DE-FG02-97ER62458), US Department of Energy’s Office of Science (BER) through the Coastal Center of the National Institute of Climate Change Research at Tulane University, the National Science Foundation’s Long-Term Research Environmental Biology program (DEB-0950080, DEB-1457100, & DEB-1557009), Maryland Sea Grant (SA7528082 & SA7528114-WW), Research Experience for Undergraduates (REU) program, and the Smithsonian Institution. Use of trade, product, or firm names does not imply endorsement by the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Mozdzer.

Additional information

Guest editors: Laura A. Meyerson and Kristin Saltonstall/Phragmites invasion.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mozdzer, T.J., Langley, J.A., Mueller, P. et al. Deep rooting and global change facilitate spread of invasive grass. Biol Invasions 18, 2619–2631 (2016). https://doi.org/10.1007/s10530-016-1156-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-016-1156-8

Keywords

Navigation